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NeuroEvolution

Application of Evolutionary Algorithms towards 
training Neural Networks

 Key Advantages
 No restraint on activation functions
 No restraint on topology
 Can escape local optima
 Applicable to reinforcement learning

+
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Investigation

Two types of NeuroEvolution
 Weight Evolving - fixed topology
 Topology & Weight Evolving

1)Does the choice of topology impact on the 
effectiveness of weight only NeuroEvolution? 

2)Is evolving topology beneficial for neuroEvolution?
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NeuroEvolution Methods

 Conventional NeuroEvolution 
 CNE
 Simplest and oldest (1990's)
 Evolves connection weights
 Fixed user defined topology

 Cartesian Genetic Programming Artificial Neural Networks
 CGPANN
 Based on Cartesian Genetic Programming
 Evolves connection weights
 Evolves topology
 Feed-forward & recurrent  
 Evolves neuron transfer functions functions
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Benchmarks

 Double Pole balancing 
 Control task
 Reinforcement learning

 

 Monks Problem 1
 Classification task
 Supervised learning 
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Experiment 1

Does the choice of topology impact on the 
effectiveness of weight only NeuroEvolution?

 Using Conventional NeuroEvolution
 Sweep a range of topologies

 Number of hidden layers (0->19)
 Number of neurons per hidden layer (1->20)
 That’s 400 separate topologies!

 Compare the fitnesses achieved for each topology
 After 5000 generations (Avg 50) 
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Layers and Nodes per Layer

2 x hidden layers
3 x nodes per layer

Fully Connected between layers
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Experiment 1 - Double Pole

Conventional NeuroEvolution

Time
balanced
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Experiment 1 - Monks Problem

Conventional NeuroEvolution

Classification
percentage
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Experiment 1 - Results

 Topology does influence the effectiveness 
of weight only NeuroEvolution.

 And as subtitle topologies are often not 
known in advance of training, this is a 
disadvantage.
  And one shared with other non topology 

optimising training methods. 
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Experiment 2

Is evolving topology beneficial for neuroEvolution?

 Compare:
 Only evolving weights of fixed random topologies
 Only evolving topologies with fixed random weights
 Evolving both weights and topologies

 Achieved using CGPANN
 Can evolve only connection weights
 Can evolve only network topology
 Can evolve both connection weights and topology 



andrew.turner@york.ac.uk 12

Network created using CGPANN
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Experiment 2 – Double Pole

Double Pole Balancing
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Experiment 2 – Monks Problem

Monks Problem
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Experiment 2 - Results

Method 1 Method 2 Best Statistically
Significant

Weights & Topology Weights alone Weights & Topology Yes

Weights & Topology Topology alone Weights & Topology No

Topology alone Weights alone Topology alone Yes

 Evolving weights & topology is statistically 
significantly better than evolving weights alone.

 Evolving topology alone is statically significantly 
better than evolving weights alone! - surprising!

Statistically significant: U-test p<0.05 & effect size >0.64 (medium)



andrew.turner@york.ac.uk 16

Overall

1) Does the choice of topology impact on the 
effectiveness of weight only NeuroEvolution?

Yes - Massively!

2) Is evolving topology beneficial for 
neuroEvolution?

Yes – possibly even more so than weights!
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                 Questions?
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Conventional NeuroEvolution

 Simplest and oldest (1990's)
 Only Evolves Connection Weights
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Cartesian Genetic Programming

Key Point
 Form of genetic programming
 Uses generic cyclic or acyclic graph structure
 Suited to any data type: ints, floats, images, videos ...
 Can use any node function: XOR, sigmoidal, sin(x) ...
 Inbuilt neutrality enabling neutral genetic drift
 Typically uses a (1+4)-ES
 Mutation only (no crossover) 
 Not just for circuits
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Cartesian Genetic Programming
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Cartesian Genetic Programming of 
Artificial Neural Networks

 Based on Cartesian Genetic Programming (CGP)
 With the addition of connection weight genes 

 Features
 Evolves connection weights
 Evolves the number of neurons
 Evolves the topology 
 Evolves the arity of each neuron
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