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NeuroEvolution

Application of Evolutionary Algorithms towards
training Neural Networks

" Key Advantages
® No restraint on activation functions
" No restraint on topology
® Can escape local optima
® Applicable to reinforcement learning
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) Investigation

Two types of NeuroEvolution
® Weight Evolving - fixed topology
" Topology & Weight Evolving

1)Does the choice of topology impact on the
effectiveness of weight only NeuroEvolution?

2)Is evolving topology beneficial for neuroEvolution?
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NeuroEvolution Methods

= Conventional NeuroEvolution
= CNE
® Simplest and oldest (1990's)
® Evolves connection weights
" Fixed user defined topology
® Cartesian Genetic Programming Artificial Neural Networks
= CGPANN
® Based on Cartesian Genetic Programming
® Evolves connection weights
" Evolves topology
" Feed-forward & recurrent
® Evolves neuron transfer functions functions
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S Benchmarks

" Double Pole balancing
® Control task

® Reinforcement learning

" Monks Problem 1
B Classification task
® Supervised learning
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Experiment 1

Does the choice of topology impact on the
effectiveness of weight only NeuroEvolution?

® Using Conventional NeuroEvolution

" Sweep a range of topologies
" Number of hidden layers (0->19)
" Number of neurons per hidden layer (1->20)
® That's 400 separate topologies!

" Compare the fithesses achieved for each topology
= After 5000 generations (Avg 50)
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Layers and Nodes per Layer

2 x hidden layers
3 X nodes per layer
Fully Connected between layers
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Experiment 1 - Double Pole

Conventional NeuroEvolution
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Experiment 1 - Monks Problem

Conventional NeuroEvolution
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) Experiment 1 - Results

" Topology does influence the effectiveness
of weight only NeuroEvolution.

® And as subtitle topologies are often not
known in advance of training, this is a
disadvantage.

® And one shared with other non topology
optimising training methods.
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Experiment 2

Is evolving topology beneficial for neuroEvolution?

" Compare:
" Only evolving weights of fixed random topologies
" Only evolving topologies with fixed random weights
" Evolving both weights and topologies

" Achieved using CGPANN
® Can evolve only connection weights
® Can evolve only network topology
® Can evolve both connection weights and topology
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Experiment 2 — Double Pole

Double Pole Balancing
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Experiment 2 — Monks Problem

Monks Problem
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Experiment 2 - Results

Method 1 Method 2 Best Statistically
Significant
Weights & Topology Weights alone Weights & Topology Yes
Weights & Topology  Topology alone  Weights & Topology No
Topology alone Weights alone Topology alone Yes

= Evolving weights & topology is statistically
significantly better than evolving weights alone.

= Evolving topology alone is statically significantly
better than evolving weights alone! - surprising!

Statistically significant: U-test p<0.05 & effect size >0.64 (medium)
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& Overall

1) Does the choice of topology impact on the
effectiveness of weight only NeuroEvolution?

Yes - Massively!

2) Is evolving topology beneficial for
neuroEvolution?

Yes — possibly even more so than weights!
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Questions?
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Conventional NeuroEvolution

® Simplest and oldest (1990's)
" Only Evolves Connection Weights
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£ Cartesian Genetic Programming

Key Point
" Form of genetic programming
® Uses generic cyclic or acyclic graph structure
® Suited to any data type: ints, floats, images, videos ...
® Can use any node function: XOR, sigmoidal, sin(x) ...
" |nbuilt neutrality enabling neutral genetic drift
" Typically uses a (1+4)-ES

A ©
" Mutation only (no crossover) 5 ° oS

Cinhe

® Not just for circuits BJD_
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Cartesian Genetic Programming
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Ay Artificial Neural Networks

® Based on Cartesian Genetic Programming (CGP)
= With the addition of connection weight genes

" Features
® Fvolves connection weights
® Evolves the number of neurons
® Fvolves the topology

® Evolves the arity of each neuron
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