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NeuroEvolution: Application of Evolutionary 

Algorithms to Artificial Neural Networks 
 

 Advantages 

 No restraint on topology 

 Can escape local optima 

 Applicable to reinforcement learning 

 No restraint on transfer functions   
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Main Topic 

 The majority of NeuroEvolutionary methods 

create homogeneous networks. 

 However NeuroEvolution can easily create 

heterogeneous networks.  

 But do heterogeneous networks provide 

any benefit for NeuroEvolution? 
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There are two methods for evolving 

heterogeneous networks: 

1) Allow evolution to select each neuron’s 

transfer function from a predetermined set 

2) Allow evolution to optimise parameters 

associated with each neuron’s transfer 

function 

 

(or a mixture of the two) 
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Key Questions 

1) Does the choice of transfer function impact the 

training of homogeneous networks?  

2) Does allowing evolution to select each neuron’s 

transfer function produce better results than the 

homogeneous networks?  

3) Does allowing evolution to optimise parameters  

associated with each neuron’s transfer function 

produce better results than their non-

parameterised counterparts? 
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Conventional NeuroEvolution 

 Simplest and oldest (1990’s) 

 Based on a Genetic Algorithm 

 Evolves connection weights  

 Fixed user defined topology 

Cartesian Genetic Programming Artificial Neural Networks 

 More complex and modern (2013) 

 Based on Cartesian Genetic Programming 

 Evolves connections weights 

 Evolves topology (feed-forward and recurrent) 
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 For a given topology: 

 

 
 

 

 
 

 Each chromosome takes the form: 
 

{W1, W2, W3, W4, W5, W6, W7, W8, W9}  

+ {F0, F1, F2, F3} 
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W - connection weight 

 F - transfer function  



Transfer Functions 
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Heaviside Step Gaussian Logistic 

σ = 1  



Parameterised Transfer Functions 
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σ = 1  σ = 2  σ = 3  

Gaussian 

Logistic 

σ = 1  σ = 2  σ = 3  



Benchmarks 
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Reinforcement Learning 

 Ball Throwing 

Supervised Learning 

 Full Adder 

 Monks Problem 1 

 Two Spirals  

 Proben1: Cancer1 



General Parameters 

 (1+4)-ES 

 3% probabilistic mutation  

 No Crossover 

 Connection weight range +/- 5 

 1000 generations (4001 evaluations) 

 Average fitness from 50 runs 

Conventional NeuroEvolution 

 3 fully connected hidden layers containing 10 nodes 

Cartesian Genetic Programming Artificial Neural Networks 

 Maximum of 30 nodes each with a maximum arity of 10 
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 Does the choice of transfer function impact 

the training of homogeneous networks?  

Experiment 1 
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Benchmark Target Step Gaussian Logistic 

Ball Throwing (↑) 9.50 5.63 6.41 5.57 

Full Adder (↑) 16.00 16.00 15.92 15.86 

Monks (train) (↓) 0.00 9.82 27.65 11.03 

Monks (test) (↓) 0.00 27.98 43.16 25.87 

Two Spirals (↓) 0 70.00 56.54 81.52 

Cancer1 (train) (↓) 0.00 10.50 5.44 3.35 

Cancer1 (test) (↓) 0.00 14.44 7.49 3.54 
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 Does the choice of transfer function impact 

the training of homogeneous networks?  

Experiment 1 
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Benchmark Target Step Gaussian Logistic 

Ball Throwing (↑) 9.50 9.34 7.34 5.80 

Full Adder (↑) 16.00 15.94 15.40 15.78 

Monks (train) (↓) 0.00 10.71 15.27 12.72 

Monks (test) (↓) 0.00 13.44 21.93 18.79 

Two Spirals (↓) 0 67.42 66.36 80.64 

Cancer1 (train) (↓) 0.00 2.16 2.55 2.50 

Cancer1 (test) (↓) 0.00 2.71 2.74 2.09 
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Results 

 The choice of neuron transfer function 

clearly effects homogeneous networks 

 Different transfer functions are suited to 

different tasks 

 It is not known in advance which transfer 

function will most suitable 

 The Heaviside step function did surprisingly 

well.  
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 Does allowing evolution to select each neuron’s 

transfer function produce better results than the 

homogeneous networks?  

Experiment 2 
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Benchmark Target Average 

Homogeneous 

Heterogeneous 

Networks 

Ball Throwing (↑) 9.50 5.87 8.83 

Full Adder (↑) 16.00 15.93 16.00 

Monks (train) (↓) 0.00 16.17 16.87 

Monks (test) (↓) 0.00 32.34 33.69 

Two Spirals (↓) 0 96.35 63.46 

Cancer1 (train) (↓) 0.00 6.43 3.87 

Cancer1 (test) (↓) 0.00 8.49 5.16 
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 Does allowing evolution to select each neuron’s 

transfer function produce better results than the 

homogeneous networks?  

Experiment 2 
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Benchmark Target Average 

Homogeneous 

Heterogeneous 

Networks 

Ball Throwing (↑) 9.50 7.49 8.90 

Full Adder (↑) 16.00 15.71 15.68 

Monks (train) (↓) 0.00 12.90 11.02 

Monks (test) (↓) 0.00 18.05 16.72 

Two Spirals (↓) 0 71.47 70.24 

Cancer1 (train) (↓) 0.00 2.40 2.33 

Cancer1 (test) (↓) 0.00 2.51 2.69 
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Results 

 Heterogeneous networks outperformed the 

average homogeneous network 

 Therefore, if the optimal transfer function is 

not known, evolving heterogeneous 

networks produces better results on 

average than a random choice of transfer 

function 
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 Does allowing evolution to optimise parameters  

associated with each neuron’s transfer function produce 

better results than their non-parameterised counterparts? 

Experiment 3 
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Benchmark Target Regular 

Gaussian 

Parameterised 

Gaussian 

Ball Throwing (↑) 9.50 6.41 8.15 

Full Adder (↑) 16.00 15.92 15.96 

Monks (train) (↓) 0.00 27.65 26.24 

Monks (test) (↓) 0.00 43.16 41.99 

Two Spirals (↓) 0 56.54 66.26 

Cancer1 (train) (↓) 0.00 5.44 3.09 

Cancer1 (test) (↓) 0.00 7.49 3.53 
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 Does allowing evolution to optimise parameters  

associated with each neuron’s transfer function produce 

better results than their non-parameterised counterparts? 

Experiment 3 
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Benchmark Target Regular 

Logistic 

Parameterised 

Logistic 

Ball Throwing (↑) 9.50 5.57 6.21 

Full Adder (↑) 16.00 15.86 16.00 

Monks (train) (↓) 0.00 11.03 10.45 

Monks (test) (↓) 0.00 25.87 27.00 

Two Spirals (↓) 0 81.52 74.28 

Cancer1 (train) (↓) 0.00 3.35 3.89 

Cancer1 (test) (↓) 0.00 3.54 4.79 
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 Does allowing evolution to optimise parameters  

associated with each neuron’s transfer function produce 

better results than their non-parameterised counterparts? 

Experiment 3 
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Benchmark Target Regular 

Gaussian 

Parameterised 

Gaussian 

Ball Throwing (↑) 9.50 7.34 7.62 

Full Adder (↑) 16.00 15.40 15.72 

Monks (train) (↓) 0.00 15.27 15.26 

Monks (test) (↓) 0.00 21.93 21.59 

Two Spirals (↓) 0 66.36 69.50 

Cancer1 (train) (↓) 0.00 2.55 2.48 

Cancer1 (test) (↓) 0.00 2.74 2.31 
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 Does allowing evolution to optimise parameters  

associated with each neuron’s transfer function produce 

better results than their non-parameterised counterparts? 

Experiment 3 
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Benchmark Target Regular 

Logistic 

Parameterised 

Logistic 

Ball Throwing (↑) 9.50 5.80 7.82 

Full Adder (↑) 16.00 15.78 15.74 

Monks (train) (↓) 0.00 12.72 10.07 

Monks (test) (↓) 0.00 18.79 17.26 

Two Spirals (↓) 0 80.64 75.60 

Cancer1 (train) (↓) 0.00 2.50 2.42 

Cancer1 (test) (↓) 0.00 2.09 2.28 
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Results 

 Optimizing parameters associated with 

each neurons transfer function produces 

better results, on average, than their                   

non-parameterised counterparts. 
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 NeuroEvolution can be used to create 

heterogeneous neural networks 

 There are two, mutually inclusive, methods for 

allowing NeuroEvolution to create 

heterogeneous networks  

 Both of these methods have been shown, on 

average, to outperform homogeneous networks 

 Both of these methods are likely compatible with 

all NeuroEvolutionary techniques 
 

*All results were also analysed using the Mann-Whitney U-test and effect size statistics 
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Mini Plug 
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CGP-Library 

 Cartesian Genetic Programming 

 NeuroEvolution 

 Simple & extendible 

 Written in C   

 Open source (LGPL) 

 

http://andrewjamesturner.co.uk/ 

https://github.com/AndrewJamesTurner/CGP-Library  

 



 

 

Questions? 
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