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Biological Neural Networks

 Structure of biological brain
 Responsible for our own intelligence
 Very different to electronic computation
 Highly fault tolerant 
 Parallel computation  
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Brain Vs Computers

Human Brain Intel's Quad-Core + GPU Core i7 

Functional element Neuron Transistor

Num elements ~ 8.6 x10^10 1.6 x10^9

Num Inputs ~ 7000 (avg) 2

Num Outputs 1 1

Num Connections ~ 6 x10^14 3.2 x10^9 

Power Consumption ~ 20 W 200 W (under load)

Centralised Control No Yes

High fault tolerance Yes No

Data Storage Distributed memory Dedicated memory

Processing Highly parallel Sequential 
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Biological Neuron
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History of Artificial Neural Networks

1896 - Discovery of biological neuron

1943 - First artificial neuron model 

1958 -  Mark I Perceptron

Dark Ages...

1986 - Back Propagation

1990 - NeuroEvolution

2013 - Still active area of research  



Andy Turner at568@york.ac.uk 7

Linearly Separable

Linearly Separable
Not Linearly Separable

XOR Gate
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Artificial Neural Network

Input Layer Hidden Layer(s) Output Layer
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Artificial Neurons

net=∑
i=1

n

w i x i o=ρ(net)
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Artificial Neurons

11

 Activation Functions

net=∑
i=1

n

w i x i

o=ρ(net)
Logistic Function (sigmoid)

Step FunctionGaussian Function
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Neural Network Training Methods

 Back Propagation – Most Popular
 Hopfield Networks
 Bolzmann Machine 
 Radial Basis Function Networks
 Deep Belief Networks
 Hebbian Learning
 NeuroEvolution – My Interest
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Back Propagation
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Output
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Back Propagation

 Pros :)
 Saved neural networks from “dark ages”
 Can solve linearly separable problems

 Cons :(
 Neuron activation functions must differentiable 
 Neuron functions are typically homogeneous 
 Easily trapped in local optima (gradient decent)
 Topology must be chosen in advance 
 Only suited to supervised learning
 Not directly applicable to recurrent neural networks
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NeuroEvolution

 Conventional NeuroEvolution (CNE) – simplest & oldest
 Symbiotic Adaptive NeuroEvolution (SAIN)
 Enforced SubPopulation  (ESP)
 NeuroEvolution of Augmenting Topologies (NEAT)
 GeNeralized Acquisition of Recurrent Links (GNARL)
 Evolutionary Programming Artificial Neural Networks (EPNET) 
 CGP Artificial Neural Networks (CGPANN) – My Interest
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Conventional NeuroEvolution
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Output00
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Conventional NeuroEvolution

 Pros :)
 No limitations on activation function
 Less prone to local optima 
 Suited to supervised learning
 Suited to reinforcement learning
 Applicable to recurrent networks  

 Cons :(
 Topology still chosen in advance by user
 Neuron functions chosen in advance by user
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CGP Artificial Neural Networks



Andy Turner at568@york.ac.uk 18

CGP Artificial Neural Networks

 Almost standard CGP
 Extra weight gene for each connection
 Use functions suited to Neural Networks

 Heavy side step function
 Sigmoid (logistic function) 
 Radial Basis Functions (Gaussian)

 High arity nodes (for high connectivity)

FC0W 0C1W 1 ...CαW α
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CGP Artificial Neural Networks

 All the benefits of conventional 
NeuroEvolution, and... 
 Also evolves topology (including recurrent)
 Creates heterogeneous networks 

 But does this actually help...
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Evolving Topology

 It is known that the choice of topology 
drastically influences the effectiveness of 
back propagation.

 But is this true for Coventional 
NeuroEvolution?

 And can CGP NeuroEvolution be used to 
find suitable topologies?  
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Evolving Topology

 Experiment!
 Conventional NeuroEvolution Vs CGPANN 
 Does the choice of topology matter?
 Does evolving topology help?

                    Double Pole Balancing Monks Problem
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Double Pole Balancing

Conventional NeuroEvolution
(Fixed Topology)

CGP Artificial Neural Networks
(Evolved Topology)

Fitness is number of seconds poles were balanced for i.e. higher is better
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Monks Problem

Fitness is classification error i.e. lower is better

Conventional NeuroEvolution
(Fixed Topology)

CGP Artificial Neural Networks
(Evolved Topology)
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Evolving Topology

Double Pole Balancing
(Higher is better)

Monks Problem
(Lower is better)
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Evolving Topology

 So yes, topology drastically impacts on the 
effectiveness of NeuroEvolution.

 And evolution can be used to find suitable 
topologies.

 This is a major advantage! When using 
Conventional NeuroEvolution (or back 
propagation) one does not know which 
topologies will be suitable. Here evolution is 
finding suitable topologies for us.  
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Regular Neural Network

00
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CGP Neural Network
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Applications

 Applications to real tasks are important for 
machine learning research.

 They represent difficult tasks which 
demonstrate the capabilities of a given 
method.

 They are also used to compare different 
methods.   

 And can also be quite fun :)

http://scr.geccocompetitions.com/results-of-the-2013-simulated-car-racing/

http://scr.geccocompetitions.com/results-of-the-2013-simulated-car-racing/
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Questions?
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CGPANN papers

 http://www.cartesiangp.co.uk/papers/gecco
2013-turner.pdf

 http://www.sciencedirect.com/science/arti
cle/pii/S0925231213004499

 https://www.lri.fr/~hansen/proceedings/2
012/GECCO/proceedings/p1031.pdf

http://www.cartesiangp.co.uk/papers/gecco2013-turner.pdf
http://www.cartesiangp.co.uk/papers/gecco2013-turner.pdf
http://www.sciencedirect.com/science/article/pii/S0925231213004499
http://www.sciencedirect.com/science/article/pii/S0925231213004499
https://www.lri.fr/~hansen/proceedings/2012/GECCO/proceedings/p1031.pdf
https://www.lri.fr/~hansen/proceedings/2012/GECCO/proceedings/p1031.pdf
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