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ABSTRACT Keywords

Parkinson’s disease is a chronic neurodegenerative condition
that manifests clinically with various movement disorders.
These are often treated with the dopamine-replacement drug
levodopa. However, the dosage of levodopa must be kept
as low as possible in order to avoid the drug’s side effects,
such as the involuntary, and often violent, muscle spasms
called dyskinesia, or levodopa-induced dyskinesia. In this
paper, we investigate the use of genetic programming for
training classifiers that can monitor the effectiveness of lev-
odopa therapy. In particular, we evolve classifiers that can
recognise tremor and dyskinesia, movement states that are
indicative of insufficient or excessive doses of levodopa, re-
spectively. The evolved classifiers achieve clinically use-
ful rates of discrimination, with AUC>0.9. We also find
that temporal classifiers generally out-perform spectral clas-
sifiers. By using classifiers that respond to low-level features
of the data, we identify the conserved patterns of movement
that are used as a basis for classification, showing how this
approach can be used to characterise as well as classify ab-
normal movement.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence|: Problem Solving, Control
Methods, and Search; 1.5.2 [Pattern Recognition]|: De-
sign Methodology; 1.5.4 [Pattern Recognition]: Applica-
tions—Signal processing; J.3 [Computer Applications]:
Life and Medical Sciences

General Terms

Experimentation
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1. INTRODUCTION

In previous work, we have focused on evolving classifiers
to diagnose Parkinson’s disease (PD) and other neurologi-
cal conditions [12, 11, 13]. Diagnosis is, however, just the
first stage of clinical management. Following diagnosis, a
patient’s condition needs to be carefully monitored in or-
der to choose an appropriate medication regimen. Since
many of the movement disorders associated with PD, such
as tremor and bradykinesia (slowed movements), are caused
by the loss of dopamine-producing neurones in the brain, pa-
tients are often prescribed dopamine replacements such as
the drug levodopa. However, doses of these drugs must be
carefully monitored in order to maintain a balance between
treatment of the patient’s symptoms and avoidance of side-
effects. One of the most debilitating side-effects is levodopa-
induced dyskinesia (LID), which causes involuntary spasms
of the limbs, trunk, neck and face. Once LID becomes es-
tablished, it is difficult to treat. A common approach to
managing its occurrence is to reduce the dose of levodopa
just prior to periods of severe LID, but this is difficult to
monitor, as the presence and severity of LID tends to fluctu-
ate throughout the day. Hence, there is a need for accurate
measurements of the patient’s symptoms, and a means to
perform these measurements frequently, non-invasively, and
inexpensively.

Ideally, monitoring of patients should take place during
the course of their normal day-to-day activities, and recently
there has been growing interest in the use of lightweight
wearable devices for carrying out monitoring in this fash-
ion. The idea is that the patient wears these devices at
appropriate locations around their body. The data from the
accelerometers is then passed to a portable device, which
periodically checks for the presence of movement disorders,
and sends this information to a clinician who can then adapt
the patient’s medication as appropriate. However, dyskine-
sias can be difficult to distinguish both from normal move-
ment and from other types of movement disorder. Hence,
the development of computational techniques that can dis-
criminate between different classes of movement, and differ-



ent severities within these classes, has become an important
area of research.

In this paper, we describe the use of genetic programming
for training classifiers that can identify the occurrence of
tremor and LID within accelerometry data collected from
wearable devices. We compare the performance of classifier
models based on temporal and spectral representations of
the data, and carry out analysis to identify the movement
patterns used by evolved classifiers. Notably we find that
classifiers trained directly on time series data are more ef-
fective than those trained on Fourier series coefficients for
discriminating both tremor and LID.

2. RELATED WORK

Previous work on applying machine learning and data
mining techniques to movement data collected from PD pa-
tients is reviewed in [1]. Particularly relevant are previous
studies that have looked at predicting specific motor symp-
toms. This includes methods for measuring tremor whilst
at rest [2], whilst performing specified movements [16], and
during unscripted activities [15]. Several studies have also
considered methods for identifying LID in movement data,
whilst at rest [7], whilst performing specified movements [3],
and during unscripted activities [9, 17]. In [6], the authors
presented a method for detecting both tremor and dyskine-
sia during unscripted activities.

The work reported in this paper differs from earlier studies
in our use of evolutionary algorithms and symbolic classifier
models based upon low-level features of the data (e.g. raw
acceleration values and Fourier coefficients), in comparison
to the use of neural networks and higher-level features (such
as signal energy and spectral powers over frequency ranges)
in comparable studies [9, 6, 17, 15]. This is justified by
our earlier work on PD diagnosis, which showed benefits in
terms of interpretability and novelty discovery [12, 11], and
which motivates our interest in characterising as well as clas-
sifying movement patterns. Characterisation is important,
since the patterns of movement in PD are only partially un-
derstood. Better understanding of these movements may
provide insight into their underlying causes, which in turn
may contribute to the development of more effective treat-
ments.

3. MATERIALS AND METHODS
3.1 Data Collection

We recruited six patients with confirmed PD for the clin-
ical study. Lightweight devices containing integrated ac-
celerometers and gyroscopes were fitted to the patients’ legs,
arms, torso, head and trunk, each able to record movement
data in the three spatial and three rotational planes at a
sample rate of 100Hz. An infrared camera was used to record
video footage of the patients’ movements. Each patient was
recorded continuously for a period of 6 hours. Other than
being situated in a hospital day case unit, the patients were
unconstrained in their movements. Following the recording
session, the video footage was analysed by two trained clin-
icians, who used the standard UPDRS (Unified Parkinson’s
Disease Rating Scale) and UDysRS (Unified Dyskinesia Rat-
ing Scale) scoring systems to mark up periods of tremor and
LID within each body part with quantitative values (ranging
from 0, indicating normal movements, to 4, indicating seri-

Tremor Dyskinesia
UPDRS | Count | UDysRS | Count
0 6661 0 2933
1 33 1 1227
2 61 2 1688
3 57 3 681
4 11 4 64

Table 1: Movement Data

ous abnormality). Data sequences corresponding to these
time periods were then extracted from the respective de-
vices, resulting in sets of movement data corresponding to
normal movement, and to tremor and LID at different clin-
ical grades. Table 1 shows the number of data sequences in
each movement class.

3.2 Evolutionary Algorithm

We used implicit context representation Cartesian GP
(IRCGP) to search for classifiers. IRCGP is a variant of
CGP that uses a non-positional low level encoding to im-
prove evolvability [4]. Prior to evaluation, IRCGP solutions
are mapped into CGP solutions. Full details of IRCGP can
be found in [11].

Evolutionary runs use a population size of 200 and a
generation limit of 100. Point mutation is applied using
a Gaussian distribution centred around the current value,
with rates of 6% for functions and 3% for functionality pro-
file elements (see [11]). Uniform crossover is applied with
crossover points occurring with a probability of 15%.

3.3 C(Classifier Models

Three kinds of classifier were used: sliding window time
series classifiers, long term spectral classifiers, and window-
based short term spectral classifiers. In each case, classifica-
tion is based on the evaluation of an evolved mathematical
expression: in all cases these use up to 32 inputs, and contain
up to 36 functions nodes ({+, —, X, =, mean, min, max, mod})
laid out on a 6x6 CGP grid. This uniformity eases compar-
isons, since the evolutionary algorithm is searching a space
of equal size and dimensionality for each classifier model.
The evolved expressions are used as follows:

Time domain classifiers For each data point, a time se-
ries is created by calculating the magnitude of acceleration
at each time index. The inputs to the expression represent
the acceleration values in a contiguous time series window of
length 32 (0.32s). This window is slid along the entire time
series, generating an output for each of the L — 31 overlap-
ping windows, where L is the length of the time series. The
classification for the time series is then the mean of these
values.

Long term spectral classifiers The inputs to the ex-
pression represent spectral densities at 32 equally spaced
points in the frequency range 0-50Hz. These frequencies
are taken from the Fourier transform of the acceleration
time series. This is calculated using the method described
in [8], which involves segmenting the time series into non-
overlapping windows (of length 64 in this case), applying
Fourier transforms to each window, and then averaging these
to produce a robust estimate of spectral density across the
whole time series.
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Figure 1: Discriminative ability of classifiers evolved to recognise dyskinesia and tremor when evaluated on
the independent test sets. Notched box plots show distributions of AUC over 50 runs. Non-overlapping
notches indicate a strong likelihood of statistically significant differences between means.
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Figure 2: Representative ROC curves for classifiers evolved to recognise UPDRS level 3 and 4 dyskinesia
and tremor when evaluated on the independent test sets for all UPDRS levels.

Short term spectral classifiers This is similar to the long
term spectral classifier. However, the expression is applied
independently to the Fourier transforms produced from each
time series window, rather than the averaged Fourier trans-
form. The classification for an acceleration time series is
then the mean of these values.

In essence, these three classifier models operate on differ-
ent views of the movement data, allowing them to recognise
different kinds of pattern. The sliding window time domain
classifier is designed to recognise conserved patterns of ac-
celeration that occur during short periods of movement, the
short term spectral classifier is similar, but operates in the
frequency domain, and the long term spectral classifier is
able to recognise stationary processes that occur over longer
time periods.

3.4 C(lassifier Evaluation

The evolutionary algorithm is used to find diagnostic clas-
sifiers that have high predictive accuracy. This is done us-
ing an objective function that measures the area under the
ROC curve (AUC) when separating classes, i.e. a classi-
fier that maximises accuracy across all trade-offs between
specificity and sensitivity. AUC is equivalent to the prob-
ability that a randomly chosen subject will be assigned to
the correct class [10]. An AUC of 1 means that a classifier
achieves 100% specificity and 100% sensitivity. An AUC of
0.5 indicates performance no better than random. Generally
speaking, AUC>0.9 is considered excellent, and AUC>0.8 is
considered good. An AUC less than 0.5 indicates the same
predictive power as one with 1 — AUC, but with a reversed
ordering of the classes within its output range. To simplify
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Figure 3: Frequency responses of spectral classifiers evolved to predict dyskinesia and tremor, showing (a-b)
periodograms matched as positive, (c-d) periodograms matched as negative.

the presentation of results, all AUCs are normalised to the
interval [0.5,1.0].

Data classes are divided equally into three sets: a training
set, a validation set, and a test set. The training set is used
by the objective function. The validation set is used for
early stopping, and to select the final generation solution
with the highest generality. The test set is then used to give
an unbiased measure of predictive accuracy for the selected
solution.

4. RESULTS

We evolved two sets of classifiers: those that can recog-
nise dyskinesia, and those that can recognise tremor. In
both cases, the objective was to discriminate grade 3 (mod-
erate) and grade 4 (severe), treated as a single class, from
grade 0 (normal). Data for grades 1 (slight) and 2 (mild)
were not used during training in order to focus classifica-
tion on clinically significant levels of abnormal movement,
and to prevent training being affected by misclassified ex-
amples (which is more likely to happen at lower grades).
Note that the grade 0 set for dyskinesia contains examples

of tremor in addition to normal movement, and vice versa.
Hence, the evolved classifiers are expected to discriminate
their movement of interest from both normal movement and
other abnormal movements.

To compensate for the stochasticity of evolutionary algo-
rithms, we carried out 50 independent runs for each combi-
nation of symptom class and classifier model. The result-
ing distributions of predictive accuracy are shown in Fig. 1.
This shows that we obtained AUCs of around 0.9 for the
best dyskinesia classifiers, and 0.98 for the best tremor clas-
sifiers. Both of these represent levels of discrimination that
are likely to be useful for monitoring purposes. Fig. 2 shows
ROC curves for representative examples of evolved dyski-
nesia and tremor classifiers. In both cases, the recognition
rates are roughly proportional to clinical grade, suggesting
that classifier outputs may also be useful for providing ob-
jective measurements of symptom severity.

It is notable that the time series classifiers performed,
on average, significantly better than the spectral classifiers.
This is most pronounced for dyskinesia, but is also true for
tremor. This is an interesting result because a lot of exist-
ing classification work on both these movement types has
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Figure 4: Acceleration patterns matched by time-domain classifiers evolved to predict dyskinesia, showing
(a-b) time series windows matched as positive, (c-d) time series windows matched as negative.

focused on the frequency domain [1, 9, 14]. For tremor, a
frequency analysis seems natural, since it is defined as a reg-
ular rhythmic oscillation of a body part, and the frequency
ranges for different kinds of tremor are relatively well char-
acterised. However, it is also possible to recognise oscilla-
tory patterns in the time domain. In addition, time domain
analysis makes it easier to characterise the shape of a wave-
form. This may underlie the performance of the time series
classifiers, since the shape of the waveform may allow bet-
ter separation of tremor and dyskinesia from other processes
that occur within the same frequency range. For example, it
has previously been observed that the frequencies associated
with dyskinesia overlap with those of voluntary movements
[9], especially walking.

Also notable are differences between the discriminative
ability of the two spectral classifier models, particularly the
observation that short term classifiers recognise dyskinesia
better than long term classifiers. This suggests that dyski-
nesia does not occur with a constant frequency during dysk-
inetic periods, which reflects previous observations that pe-
riods of dyskinetic movement are intrinsically complex [5].
This is in contrast to the slightly better performance that

long term classifiers show for tremor recognition, which is
consistent with current understanding of the stationarity of
Parkinson’s tremor.

4.1 Discriminative Patterns

A benefit of using raw temporal and spectral data as a
basis for classification, rather than more complex features
derived from these, is the potential for identifying discrim-
inative patterns of motor movements. In particular, it is
possible to look at the data windows that lead to a strong
positive or negative response from a classifier in order to
identify significant over-represented patterns of movement
[12]. This has more value in the time domain than the fre-
quency domain. However, for completeness, Fig. 3 shows the
periodograms which lead to strong positive and negative re-
sponses from evolved tremor and dyskinesia classifiers. It
can be seen that tremor classifiers favour movements with
periodograms that are dominated by spikes of around 4Hz
and 8Hz. This corresponds well with the known bands of rest
and action tremors. Dyskinesia classifiers, by comparison,
favour periodograms with the power spectrum concentrated
in the low frequencies. Again, this corresponds well with ex-
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Figure 5: Acceleration patterns matched by time-domain classifiers evolved to predict tremor, showing (a)
time series windows matched as positive, (b) time series windows matched as negative.

isting understanding of the frequency range of LID. It is also
evident that the tremor and dyskinesia classifiers are sym-
metric, with the dyskinesia classifier most strongly rejecting
periodograms that indicate tremor, and vice versa. This
is likely to be a desirable behavior in practice, since these
two movement classes are opposing indicators of levodopa
dosage.

Fig. 4 shows a similar analysis from the time domain
perspective, indicating over-represented patterns that occur
within data windows classified strongly as dyskinesia or not
dyskinesia. During the course of analysis, it was observed
that classifiers evolved in different evolutionary runs often
respond to different movement features in the data. For in-
stance, the classifier whose matching behaviour is shown in
Fig. 4a appears to respond strongly to the presence of a non-
linear acceleration profile which starts flat and rises quickly,
with a pronounced shoulder. Fig. 4b by comparison, sug-
gests a classifier that responds to short periods of reduced
acceleration during movements, with the highest matching
patterns of acceleration resembling an M-shape. Some di-
versity is also seen in the negative responses from dyskinesia
classifiers. However, Figs. 4c and 4d are representative of
most. Fig. 4c suggests that constant acceleration is atypical
of dyskinesia. Fig. 4d indicates the rejection of certain oscil-
latory patterns—most likely tremor, therefore suggesting a
similar symmetric relationship to the ones seen in frequency
domain classifiers. This is also supported by analysis of time
domain classifiers evolved to recognise tremor (see Fig. 5),
where negative responses somewhat resemble the dyskinetic
acceleration profile shown in Fig. 4a.

5.  CONCLUSIONS

In this paper, we have shown that genetic programming is
able to design classifiers that can be used for monitoring a
patient’s response to levodopa therapy. We have also shown
how the evolved classifiers can be analysed to identify the
patterns of over-represented movement that are associated
with tremor and dyskinesia.

Whilst the results seem promising, it should be born in
mind that this is only an initial study involving a relatively
small number of patients. Nevertheless, plans are currently

underway to collect data from a larger group of patients,
which will enable us to generate more robust classifiers, and
also carry out a more rigorous study of the movement pat-
terns underlying tremor, dyskinesia and other movement dis-
orders associated with Parkinson’s disease.

We can also expect to obtain better classifier performance
by forming ensembles of evolved classifiers. Our previous
work on Parkinson’s diagnosis has shown the benefits of
combining behaviourally diverse classifiers [11]. Given the
diversity we have seen within the evolutionary runs in these
experiments, this approach would seem particularly appro-
priate, especially if the movement patterns we see are com-
plementary indicators of the underlying movement disorders.

Rather than generating a single classifier or ensemble for
all patients, it may be more effective to train classifiers inde-
pendently for each patient. Certainly our initial results (not
reported here) seem to support this idea. Hence, in prac-
tice, we might expect the monitoring of levodopa treatment
to be preceded by an initial evaluation that involves col-
lecting movement data and training classifiers, rather than
a one size fits all approach. However, such a personalised
approach to medicine would be costly, especially given the
growing incidence of Parkinson’s disease. Nevertheless, the
results presented in this paper indicate that sufficient gener-
ality can be obtained without considering patients individ-
ually.
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