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"Ignorance more frequently begets confidence than does knowledge: it is those who know 
little, and not those who know much, who so positively assert that this or that problem will 
never be solved by science." 

- Charles Darwin 



 

  



 

Abstract 

This project documents an investigation into the effectiveness of a new form of crossover to 

be applied to Cartesian Genetic Programming. The assessment of the crossover technique is 

achieved via four distinct test cases, with the effectiveness analysed in each case. Using the 

results of these experiments it is shown that this new form of crossover is not beneficial to 

the search process of Cartesian Genetic Programming.   
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1 Introduction  

This project furthers work published by Janet Clegg [1] surrounding a new crossover 

technique to be used by Cartesian Genetic Programming. The paper is included in Appendix 

A for the reader’s reference. Cartesian Genetic Programming is a subset of Evolutionary 

Computation; a group of techniques used to solve optimisation problems via methods 

inspired by Darwinian evolution. The paper published by Janet Clegg reports a high decrease 

in convergence time required to find solutions compared to Cartesian Genetic Programming 

implemented without the new crossover technique. This project first repeats the 

experiments described within Janet Clegg's paper and then continues the research 

described by the further work section. The overall aim is to reach a conclusion over the 

effectiveness of the new crossover technique when applied to Cartesian Genetic 

Programming.  

As a point of interest, the need for further research into the effectiveness of crossover 

techniques, as applied to Cartesian Genetic Programming, is also discussed by one of the 

creators of Cartesian Genetic Programming, Julian Miller. Reference is made for the need of 

this research in his book "Cartesian Genetic Programming" [2], as described in the following 

extract:  

"Crossover operators have received relatively little attention in CGP. Originally a one-point 

crossover operator was used in CGP (similar to the n-point crossover in genetic algorithms) 

but was found to be disruptive to the subgraphs within the chromosomes, and had a 

detrimental affect on the performance of CGP. Some work by Clegg et al. has investigated 

crossover in CGP (and GP in general). Their approach uses a floating-point crossover 

operator, similar to that found in evolutionary programming, and also adds an extra layer of 

encoding to the genotype, in which all genes are encoded as a floating-point number in the 

range [0,1]. A larger population and tournament selection were also used instead of the (1 + 

4) evolutionary strategy normally used in CGP, to try and improve the population diversity. 

The results of this new approach appear promising when applied to two symbolic regression 

problems, but further work is required on a range of problems in order to assess its 

advantages."         
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The remainder of this chapter shall now describe the reports structure and introduce each 

chapter. The Evolutionary Computation chapter introduces the general field of Evolutionary 

Computation and the various techniques which are employed to guide the search process. 

The Background Literature chapter discusses the literature surrounding Cartesian Genetic 

Programming; the Genetic Program used throughout this project. The Cartesian Genetic 

Programming chapter describes, in detail, the structure and operation of a "traditional" 

Cartesian Genetic Program. The Crossover Techniques chapter discusses a range of 

crossover techniques including that used within this project. The Investigation chapter 

discusses the aims and objectives of the project and describes at a high level the 

experiments which were undertaken. The Possible Test Cases Chapter describes several 

possible scenarios which could be used to evaluate the new crossover technique, of which a 

sub set were chosen for the experiments. The Project Timeline chapter describes the 

original order in which different aspects of the project were to be carried out and how long 

was to be spent on each stage. The Implementing the New Crossover Technique chapter 

discusses how the new crossover technique is implemented within the Cartesian Genetic 

Program. 

The design of the author's Cartesian Genetic Program then begins with a Specification 

chapter defining specific criteria of the program. The Cartesian Genetic Program Production 

chapter then discusses the implementation of the author’s Cartesian Genetic Program. 

Finally for the design stage, the Testing Chapter describes the testing strategies which were 

undertaken to ensure the correct operation of the author’s Cartesian Genetic Program.  

Each of the test cases investigated, to assess the effectiveness of the new crossover 

technique, is described within its own chapter; beginning with Repeating Janet Clegg's 

Experiments. The following test cases are also described within their own chapters: Test 

Case 1: Symbolic Regression, Test Case 2: Synthesis of Boolean Logic, Test Case 3: Function 

Optimisation and finally Test Case 4: Wall Avoider. 

The project is then concluded with an Additional Investigations chapter discussing some 

additional experiments undertaken using the author’s Cartesian Genetic Program, followed 

by a final Conclusion and a Review of the Project overall.  
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2 Evolutionary Computation  

Evolutionary Computation, and all of its variants, are search methods inspired by Darwinian 

Evolution. The term search method is used here in relation to searching what is sometimes 

called the solution space or design space. These are theoretical landscapes which contain all 

possible solutions to a given problem. These landscapes are navigated with a number of 

variables; these variables are what the Evolutionary Computational strategies optimise to 

find the most suitable solution. 

 

Figure 1 Depiction of Design Space
1
  

Figure 1 gives a depiction of this design space, with the left image indicating what is possible 

with the use of design algorithms; also showing that it takes inspiration to expand the area 

of the design space currently understood. The right image shows how search algorithms are 

not constrained to what is referred to as the "human design space" and are capable of 

accessing a much wider range of solutions. It is interesting to note, that once a new solution 

is found outside of the "human design space", it is then possible to learn from this solution 

and widen our overall understanding of the design space, this is akin to inspiration. 

Evolutionary Computation begins by creating an initial population of solutions, it is unlikely 

that any of these solutions will be at all suitable, but it is likely that some will be more 

suitable than others. These solutions are referred to as genotypes or chromosomes; as this 

                                                     
1 Sourced from Julian F Millers taught lecture course "Bio-inspired computing" at the University of York 2011 
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technique has its roots in biology it shares much of the terminology. Once these 

chromosomes have been generated, the weaker are removed following the concept of 

natural selection; or more usually in Evolutionary Computation, "survival of the fittest". The 

remaining chromosomes are then used to produce the next generation, this process shares 

characteristics of "reproduction" with the use of "recombination" and/or "mutation". 

Recombination2 is often referred to as crossover when describing Evolutionary 

Computation. This process of "survival of the fittest" followed by "reproduction" is iterated 

until a termination condition is met; this prevents the process continuing indefinitely. All of 

the processes described in this paragraph are now discussed in further detail.  

2.1 Initial Population 

The initial population is usually generated by randomly selecting values for the parameters 

which describe each chromosome. It is important that each chromosome is capable of 

having its fitness evaluated; in some cases it is necessary to employ a repair algorithm if a 

randomly generated chromosome might not always represent a valid solution. The initial 

population can also be seeded with a solution which is thought to be "near" a suitable 

solution. This technique can be used to improve upon existing solutions.    

The size of the population is one of the many parameters which control the evolutionary 

process and the optimal size of the population depends upon the problem under 

investigation. It is often difficult to know a suitable population size before trial runs have 

been completed.     

2.2 Survival of the Fittest 

Survival of the fittest is the simplest form of natural selection; as it is achieved by looking at 

each chromosome individually. For this reason survival of the fittest is often the selection 

technique used to select candidates to generate the next population. The survival of the 

fittest is employed by assigning a numerical value to each chromosome indicating its fitness; 

this is achieved by what is commonly called a fitness function. The fitness function is often 

the most complex component of Evolutionary Computation requiring the most computation 

time, it is also the most bespoke component of Evolutionary Computation and will have to 

be re-written for each new problem investigated. 

                                                     
2 Recombination is akin to sexual reproduction.  



 

5 
 

2.3 Reproduction 

Reproduction is concerned with generating the next population from the current 

population; there are a wide range of methods for achieving this. In most cases 

reproduction can be split into three areas; Evolutionary Strategy, Selection, and finally 

Mutation and/or Crossover; each of which is now discussed. 

2.3.1 Evolutionary Strategy 

It should be noted, that here the term evolutionary strategy does not refer to the subfield of 

Evolutionary Computation introduced by Ingo Rechenberg. Here the term evolutionary 

strategy refers to different techniques which can be used to govern how to create the next 

generation from the current generation. 

There are two main forms of evolutionary strategy, which take the form of      -   and 

     -  . The "µ" represents the number of parents that are used to create the next 

generation and the "λ" represents the number of children which are created. The "+" form 

represents that the next generation comprises of parents and children, whereas the "," form 

represents that the next generation comprises of children alone. The "-ES" extension refers 

to evolutionary strategy.  

The "µ" and "λ" values are parameters which control the evolutionary process; they also 

dictate the population size3. The distinguishing features between the "+" form and the "," 

form is that the "+" form keeps hold of the current best solution(s), where as the "," form 

does not. An advantage of the "," form is that sometimes it is necessary to allow deviations 

from what could be local solutions to find the overall global solution. The "," from is also 

more akin to biology; on which Evolutionary Computation is based. 

There are many variations on this arrangement which can be used to change the way in 

which the evolution takes effect. A common technique which is referred to as "elitism" 

takes the form of (1 + λ)-ES. This creates a scenario where the next generation is entirely 

created from the "best" chromosome and that the "best" chromosome is always included in 

the next population. It is also common practice to always select a child over a parent, to be 

the next elite chromosome, if they both share equal fitness. This is because the child may 

                                                     
3 Population size = µ + λ when following the "+" form and population size = λ when following the "," form.  
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contain different redundant genes4 to the parent which may become beneficial in future 

generations; always keeping the parent can cause the search to stagnate.        

2.3.2 Selection 

Once all of the chromosomes have been assigned a fitness value, a selection of the 

population can be chosen to seed the next generation. The number of chromosomes which 

are selected is dictated by the evolutionary strategy described in the previous section. There 

are many methods used to select the "best" candidates to seed the next generation and 

these are often referred to as "parent selection methods". Three possible parent selection 

methods are now described in this section to show how these selection methods can be 

implemented.  

2.3.2.1 Tournament Selection 

Tournament selection is a very simple selection strategy where a predefined number of the 

population is taken at random and the chromosome(s) with the highest fitness are 

promoted to seed the next generation. This process is looped until the next generation 

reaches the population size. Again this process relies on predefined parameters i.e. the 

number of chromosomes in each tournament and how many can be promoted from each 

tournament. 

2.3.2.2 Elitist Selection (or Linear Rank Selection) 

Elitist selection is again a very simple selection method, the population is ranked in order of 

their fitness and a predefined number of the fittest are selected to seed the next 

generation. The associated disadvantage with Elitist Selection is that it is required that the 

whole population is sorted each generation; at the cost of time and computational budget.   

2.3.2.3 Roulette Wheel (or Proportionate Selection) 

With the roulette wheel selection strategy the chromosomes are assigned a probability of 

being selected which is proportional to their fitness i.e. the fitter chromosomes have a 

higher chance of being selected. Then a random number source is used to mimic the 

"roulette wheel" and select a predefined number of chromosomes to be promoted. 

                                                     
4 Genes which do not influence the operation of the chromosome.  
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There are again however a number of disadvantages associated with the "roulette wheel" 

selection method; which are now discussed. It cannot be directly used on minimisation 

problems (where the best fitness value is zero) as when the solutions all approach zero so 

do the differences in their fitness. Also as the process converges on a solution the 

differences in fitness again approach zero and so the selection method "loses direction".   

2.3.3 Mutation and/or Crossover 

Once the chromosomes which are to seed the next generation have been selected, it is then 

necessary to generate the next population; this is where the mutation and crossover 

operators are used. The first thing to note, is that some Evolutionary Computational 

strategies use mutation or crossover in isolation, whereas others strategies use both. It is 

also important to note, that mutation can be used to generate the next population from a 

number of initial chromosomes or it can be applied to a population which has already been 

generated.  

There are again a number of parameters which control this stage of the evolutionary 

process; these parameters include: the percentage of the population which is generated by 

mutation, the percentage generated by crossover and to what extent the mutations alter 

the subject chromosome. 

The most common mutation method, "Point Mutation", is to randomly select a gene within 

a chromosome to be mutated and within that gene randomly select a parameter which 

describes its operation. This parameter, within the gene, than has its current value changed 

to another randomly generated valid value. This operation can be applied multiple times to 

the same chromosome until a desired mutation rate has been achieved.    

There are many types of crossover techniques, all of which try to create children with 

characteristics from both parents. It is also possible for the same parents to produce 

multiple children by combining their characteristics in different arrangements. For more 

information on different types of crossover techniques see the chapter entitled Crossover 

Techniques. 
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2.4 Termination Condition 

As mentioned previously, the process of generating a new population from the old is 

iterated until a termination condition is reached. There are many different termination 

conditions which can be used, but it is important that at least one of them is reached after 

an appropriate length of time. This termination condition can be simply a specific number of 

iterated generations. This ensures that the process does not continue indefinitely. 

Termination conditions can include: a solution is found which meets a given specification, a 

fixed number of generations has been reached, a real world time scale, computational 

budget, real world budget (time or funding), the best fitness has not improved for a given 

number of generations or physically inspecting the best solution. In many cases a selection 

of these conditions are used as well as conditions which may be more bespoke to the 

current task.  
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3 Background Literature  

Here a selection of literature surrounding Genetic Programming and its wider context will be 

given and discussed. This literature makes up a large section of the background reading 

which was undertaken to understand the field of Cartesian Genetic Programming and where 

this project lies within it.  

The Evolutionary World section describes where Genetic Programming lies within the wider 

field of Artificial Intelligence and gives the history of developments which led to Genetic 

Programming. The Cartesian Genetic Programming section discusses this extension to 

Genetic Programming; again providing its history. It will also discuss crossover when applied 

to Cartesian Genetic Programming. 

The Current Cartesian Genetic Programming Developments section discusses extensions to 

Cartesian Genetic Programming which have been, and continue to be, developed. The 

Applications of Cartesian Genetic Programming section gives examples of when Cartesian 

Genetic Programming has been applied to real world applications.  

The final section, Schema Theorem, introduces the Schema Theorem; a widely accepted 

theory as to why Genetic Algorithms are so powerful. Although this is only a descriptive 

explanation; no mathematical derivation is given. 

3.1 Evolutionary World 

At a high level, Genetic Programming sits under the umbrella of Artificial Intelligence. The 

term “Artificial Intelligence” was first coined by John McCarthy [3] at a conference at 

Dartmouth College in 1956; the first conference to address the concept of machine 

intelligence. John McCarthy, who is also the creator of lisp (a programming language often 

used for artificial intelligence), defines the term “Artificial Intelligence” as: "the science and 

engineering of making intelligent machines, especially intelligent computer programs" [4].  

Evolutionary Computation is a sub field of Artificial Intelligence and is a term which 

encapsulates many related problem solving techniques all inspired by Darwinian Evolution 

[5]. It is used within the field of Artificial Intelligence due to its ability to actively solve 

problems without prior knowledge of the problem space and with little to no human 
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influence. As an interesting point, the notion of using artificial evolution was proposed by 

Alan Turing in 1948, the essay was dismissed by his employer (the grandson of Charles 

Darwin) as a “schoolboy essay” [6]. 

As with many discoveries in science, Evolutionary Computation was innovated 

independently by different groups around the world. As a result, Evolutionary Computation 

is often accredited to three separate pioneers who called their respective fields: 

Evolutionary Programming, Evolutionary Strategies and Genetic Algorithms. These three 

fields (in their traditional forms) are now discussed in further detail.   

3.1.1 Evolutionary Programming 

Dr Lawrence J Fogel et al introduced Evolutionary Programming in his book [7] “Artificial 

Intelligence through Simulated Evolution” in 1966. The book furthered his work achieved 

during his PhD “On the Organization of Intellect” which was awarded in 1964. Evolutionary 

Programming’s distinguishing features are that it employs a fixed internal structure and 

varies only the numerical parameters of the functions used. It also only uses mutation as its 

main evolutionary operator, rather than mutation and crossover. This is because each 

member of the population is viewed as a separate species and so is not compatible with 

other solutions. The next generation is created by mutating the members of the previous 

generations in what is sometimes referred to as a (μ + μ)-ES.   

3.1.2 Evolutionary Strategies 

A German computer scientist called Ingo Rechenberg introduced Evolutionary Strategies (or 

"Evolutionsstrategie") in his PhD dissertation [8] entitled "Optimierung technischer Systeme 

nach Prinzipien der biologischen Evolution" in 1971. His work was furthered by himself, 

Hans-Paul Schwefel et al and is continued to this day. In 2002, Hans-Paul Schwefel and 

Hans-Georg Beyer produced an article [9] called "Evolutionary Strategies - A comprehensive 

introduction", which provides substantial information surrounding Evolutionary Strategies; 

including the history and initial motivations.  

Evolutionary Strategies originally used mutation and survival of the fittest for their 

evolutionary operators, crossover was not used until later [9]; it is still debated whether 

crossover aids the search process. The mutation used was referred to as Gaussian mutation; 

where the new value of the mutated gene is most likely to be given a value close to the 
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original, but can be given an increasingly different value with decreasing probability. This 

ensures that the mutation is not so strong that the search appears random, but not always 

too weak that the search gets trapped in local solutions. 

3.1.3 Genetic Algorithms 

Prof John Henry Holland introduced Genetic Algorithms in his highly influential book [10] 

“Adaptation in Natural and Artificial Systems”; first published in 1975. Genetic Algorithms 

operate by optimising a number of predetermined parameters. The fact that the number of 

parameters is often fixed, leads to simple crossover/recombination implementation; which 

is often employed alongside mutation.  

Genetic Algorithms (as well as Evolutionary Strategies) are a subset of Evolutionary 

Algorithms, where Genetic Algorithms are the most popular Evolutionary Algorithm. 

Confusingly in some literature these terms seem to be used interchangeably. A general rule 

of thumb appears to be that the term “Genetic” implies that crossover/recombination is 

used more dominantly than mutation.  

In Genetic Algorithms, crossover is considered highly important in reaching optimal 

solutions quickly, and often takes its inspiration from biology by using two parents to 

produce the child solutions. There is however research which suggests that using more than 

two parents often offers a greater advantage [11][12]. 

3.1.3.1 Genetic Programming 

Genetic Programming is a specialised version of Genetic Algorithms; where the solutions are 

also represented as chromosomes comprising of individual genes. Unlike Genetic Algorithms 

however, the chromosomes represent a tree structure rather than a string of values. This 

tree structure does not have a fixed internal layout, with the connections also been 

described by the chromosomes. This results in the evolutionary process evolving the 

structure of the solution instead of just optimising a predefined structure. The functions at 

the nodes within the structure can also be varied during the evolutionary process. This is a 

huge advantage as the way in which problems are approached can be evolved, instead of 

just optimising a predetermined method. Dr John R Koza is often cited as the main 

contributor to Genetic Programming, due to his pioneering work published in his book [13] 
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“Genetic Programming: On the programming of computers by means of natural selection” in 

1992.  

The evolutionary operators for Genetic Programming are still mutation and 

crossover/recombination; except now care has to be taken to ensure that the mutation 

does not change the chromosome to a solution which is no longer valid. Crossover also 

becomes more complex, due to the chromosomes now be of variable length. As a result 

crossover is usually achieved by switching whole branches of the tree structures, which 

results in children with very different characteristics from their parents; quite different from 

reproduction in biology. It also leads to the strange phenomena of bloat, where the average 

length of the chromosomes in a population continues to increase as the Genetic Program is 

ran, with little to no improvement to the overall fitness. These issues are explained and 

solved in Koza’s book [13] and subsequent books. A book [14] by Riccardo Poli entitled “A 

Field Guide to Genetic Programming” is an excellent start for someone new to the field and 

wishes to create a Genetic Program. It covers the issues describe in this section and is free 

under the Creative Commons license. 

3.2 Cartesian Genetic Programming  

Cartesian Genetic Programming is a further specialisation of Genetic Programming 

introduced by Julian Miller and Peter Thomson [15]. The idea was born from using 

Evolutionary techniques to evolve digital circuits and was originally called Cartesian Genetic 

Programming in a paper [16]; which analysed and furthered this work in 1999. Cartesian 

Genetic Programming was formally introduced as a general form of Genetic Programming in 

2000 [17].  

Unlike regular Genetic Programming, which arrange their nodes in a tree structure, 

Cartesian Genetic Programs arrange their nodes in a grid structure indexed by coordinates 

(x and y); hence the term "Cartesian". This structure makes it possible for the re-use of 

nodes within the evolved programs; leading to increased efficiency as if the same value is 

needed multiple times it doesn't have to be recalculated. Another artefact of Cartesian 

Genetic Programming is the presence of redundancy in the chromosomes; these are genes 

which do not contribute to the overall operation of the chromosome. This redundancy has 

been shown by Julian Miller et al to be beneficial in the evolutionary process [18]; it is 
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suggested in the research that the best results were obtained with 95% redundancy in the 

chromosomes. It is also thought that this redundancy is the cause of the absence (or high 

reduction) of bloat within Cartesian Genetic Programming when evolving solutions [19]. This 

is a major advantage as bloat is a drawback of regular Genetic Programming and one which 

John Koza spent a lot time trying to resolve.  

This redundancy is also thought to cause neutral drift [20] within the chromosomes; where 

the mutation of a gene does not always pose an advantage or disadvantage and hence can 

make it through to the next generation. This neutral drift is thought to significantly aid the 

search process. A paper [20] published by T. Yu et al, also propose that this neutrality would 

help solve needle-in-haystack type problems, where the fitness of a solution can only have a 

binary representation; correct or incorrect. These types of problems are very hard (likely 

impossible) to evaluate as no information is provided about the location of the "needles" 

from testing other locations. The results of T. Yu were questioned by M. Collins [21] who 

suggested that he could not repeat the results obtained by T. Yu. It is still thought however 

that neutral drift may beneficial to the evolutionary process [22]; even if it were shown not 

to aid needle-in-haystack type problems.  

Cartesian Genetic Programming uses point mutation and elitism as its evolutionary 

operators [2], as described in Julian Millers book "Cartesian Genetic Programming". Point 

mutation is where a randomly chosen parameter of a randomly chosen gene is changed to a 

different randomly chosen valid state. Elitism is where the fittest member of the population 

is automatically promoted to the next generation. In Cartesian Genetic Programming the 

rest of the next generation is populated by mutated versions of the promoted elite 

chromosome, this is commonly referred to as a (1 + λ)-ES. 

Crossover is thought to be highly important for the evolutionary process in Genetic 

Programming and is used extensively in the field. However, a study [16] showed one-point 

crossover to be disruptive to Cartesian Genetic Programming and as a result is not used in 

the majority of its applications. It is strange that such a close relative of Cartesian Genetic 

Programming uses crossover extensively and yet it itself does not. Although recently work 

by Janet Clegg [1] has investigated applying flat crossover to Cartesian Genetic Programming 

with promising results. 
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3.3 Current Cartesian Genetic Programming Developments 

Cartesian Genetic Programming made its first appearance over ten years ago and has 

continued to be developed. This section introduces the two main developments which have 

been applied to Cartesian Genetic Programming: Embedded Cartesian Genetic Programming 

and Self-Modifying Cartesian Genetic Programming. Embedded Cartesian Genetic 

Programming adds the ability for the chromosomes to create sub modules within 

themselves; with the aim to aid the evolutionary process of certain problems. Self-

Modifying Cartesian Genetic Programming allows the standard Cartesian Genetic 

Programming to produce solutions which change over time; similar to how animals grow in 

biology.       

3.3.1 Embedded Cartesian Genetic Programming 

When a human designs software or digital circuits it is common practice to split the problem 

up into smaller sub-sections, which are simpler to design, then use these sub-sections to 

realise the larger solution. For instance, if a processor were to be designed one would not 

start at a logic gate level, one would design adders, shift registers etc and then use these 

new components in the final design. The same concept could be used (and is used) for 

Evolutionary Computation. When Evolutionary Computation is employed, there are a 

number of given (often simple) allowed functions; these are the same as the logic gates in 

the given example. The Evolutionary Computational strategy could then be allowed to make 

its own new functions, from these given simple functions. It is thought that if this were 

possible, Evolutionary Computation could then tackle larger scale problems; something 

which it has struggled with in the past. 

Embedded Cartesian Genetic Programming [23] was introduced by James Walker and Julian 

Miller in 2004 and was designed to achieve module acquisition as described in the previous 

paragraph. The module acquisition operates by randomly selecting two points in the 

chromosome and transforming that section into a new function which is used in its place. 

This function is then available for future use as a function by any other gene; if mutation 

brings it in to operation. After the best chromosomes are selected for the next generation, 

only the functions contained within these chromosomes are available as modules; this stops 

the increase of unwanted modules. Mutation still effects the modules but in a more 

controlled manor. Module acquisition is not allowed within other modules to stop the 
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growth of nested modules getting too large. Module outputs can never be mapped to 

module inputs; as this would create a "junk" module. There is also a mutation operation 

which causes the contents of the module to be inserted in its place in the chromosome. 

Julian Millers book provides detailed coverage of how Embedded Cartesian Genetic 

Programming operates [24]. 

In order to test Embedded Cartesian Genetic Programming, the task of evolving even parity 

functions using the logic gates: AND, OR, NAND and NOR was used [23]. This makes for a 

suitable experiment as calculating parity functions is extremely modular and therefore 

suited to Embedded Cartesian Genetic Programming. As an extra difficulty, it is known that 

implementing even parity functions is far simpler with the use of XOR or EXNOR functions; 

therefore these were not provided. The results of this experiment showed that for small 

parity problems the overhead of the module acquisition hindered the evolutionary process. 

However, for larger parity problems it proved a large advantage generating even parity 

function up to twenty times faster than regular Cartesian Genetic Programming. 

3.3.2 Self-Modifying Cartesian Genetic Programming  

To understand the motivation behind Self-Modifying Cartesian Genetic Programming the 

concept of genotypes and phenotypes must be introduced. The genotype (or chromosome) 

is a description of a solution to a given problem rather than the solution itself, this 

description has to be decoded to produce the solution; this solution is the phenotype. In 

many forms of Evolutionary Computation the mapping between the genotype and 

phenotype is direct; the mapping is slightly more abstract however in Cartesian Genetic 

Programming. 

In biological systems the mapping between the genotype and the phenotype changes over 

time e.g. as animals develop from a few cells to their final form. This ability to change the 

phenotype over time was the inspiration for Self-Modifying Cartesian Genetic Programming. 

Self-Modifying Cartesian Genetic Programming was introduced in 2007 [25] by Simon 

Harling et al and is discussed in detail in Julian Millers book [26]. The genotype changes the 

phenotypes over time with the addition of new functions which when executed change the 

original structure of the genotype. The new structure may contain further self-modifying 

functions which are then executed on the next evaluation of the phenotype. This results in a 
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series of phenotypes all of which can have different functionality. This technique is useful 

when trying to solve a series of computational problems rather than a single instance. 

Another feature of Self-Modifying Cartesian Genetic Programming is its ability to acquire 

more inputs and produce more outputs as it develops. 

A strong advantage of Self-Modifying Cartesian Genetic Programming is its ability to find 

general solutions. As proof of this, the task of evolving even parity functions using logic 

gates was used; see the section on Embedded Cartesian Genetic Programming for further 

details as to why this is such an interesting problem. The Self-Modifying Cartesian Genetic 

Program successfully generated a program which could calculate the parity of an arbitrary 

sized bit string (tested to 24 bits) by iterating the self-modifying process until the 

corresponding iteration was reached. From this a general solution was derived to the even 

bit parity problem; these results were published in 2010 [27]. 

It was also shown that the use of Self-Modifying Cartesian Genetic Programming on 

problems which do not benefit from the self-modifying aspect, were not hindered by its 

presence [28]. Julian Miller indicates in his book that Self-Modifying Cartesian Genetic 

Programming could "be a suitable replacement for the classical Cartesian Genetic 

Programming model" [26]. At the time of writing this, a new version of Self-Modifying 

Cartesian Genetic Programming is under development which aims to simplify and optimise 

this technique.        

3.4 Applications of Cartesian Genetic Programming   

Cartesian Genetic Programming is relatively new in the field of Evolutionary Computation, 

but there are still many examples of its application; a selection of which are described in this 

section.  

3.4.1 Co-Evolution  

Gul Muhammad Khan et al produced a paper [29] describing the application of Cartesian 

Genetic Programming to the co-evolution of two agents in a predator-prey relationship. The 

behaviour of these agents was implemented by a biologically inspired neural network, which 

had the ability to adapt itself during its “life time". It was found that the agents were able to 

learn from their environment and pass on this knowledge to the next generation. This result 
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inspired them to continue their work in trying “to see if it is possible to evolve a general 

capability for learning”.  

Another example of co-evolution was shown by Joseph A. Rothermich and Julian F. Miller 

[30] in an experiment which investigated the emergence of multicellular organisms using 

evolution. They created a scenario where “cells” existed in a world containing areas of 

“food”. The “cells” and “food” released chemical signals which could be detected by the 

other “cells”. The “cells” were given the option of dividing (at a small energy cost) into two 

of the same cell; with slight mutation. It was found that over time the cells which did divide 

were more prominent than those which did not. This was thought to be because one of 

many cells were more likely to find “food” and survive than a single “cell”; hence more likely 

to pass on their genes.  

3.4.2 Hardware Implementations 

The implementation of Genetic Programs on graphics processor units has recently become a 

topic of interest in the Evolutionary Computational world. This is due to the significant 

decrease in computational time when multiple processes can be run in parallel. Simon 

Harding [31] used graphics processor units to evolve noise reduction filters which were 

notably better than standard median filters; which are often used for this application.  

Work by Zdenek Vasicek and Lukas Sekanina [32] also found that Cartesian Genetic 

Programs implemented on FPGA’s significantly decreased computational time; 30-40 times 

compared to highly optimised software implementations. Their work surrounded the solving 

of symbolic regression problems and the implementation of digital logic circuits.  

3.4.3 Synthesis of Boolean Logic 

The widest application of Cartesian Genetic Programming has been towards the evolution of 

digital circuits [16]; such as even parity generators previously described. This work has also 

been extended by Zbysek Gajda and Lukas Sekanina [33] by including polymorphic logic 

gates; gates which change their function depending upon a control signal. Their work was 

motivated by the limitations of current polymorphic circuit design techniques and 

concluded that a combination of conventional design and Cartesian Genetic Programming 

created the most efficient circuits. 
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3.5 Schema Theorem 

The Schema Theorem is a widely excepted explanation as to why Genetic Algorithms are so 

powerful when applied to solving optimisation problems. The Schema Theorem was 

proposed by the founder of Genetic Algorithms John Holland [10]; see the Genetic 

Algorithms section. For a critical review of whether the Schema Theorem can truly explain 

the effectiveness of Genetic Algorithms see [34] by Lee Altenberg. 

The concept behind Schema Theorem is that all chromosomes fall into multiple schemata 

(sets of similar chromosomes). When each chromosome is evaluated, all of the other 

possible chromosomes belonging to the sets which contain that chromosome are to some 

extent also evaluated. This adds a level of implicit parallelism to the search process. As the 

weaker chromosomes are removed by the selection method employed, the range of 

different schema is reduced and the average fitness of each schema increased. It is then 

likely that the use of mutation and/or crossover will improve the fitness of each 

chromosome. Genetic Algorithms therefore navigate the search space using what appear to 

be random methods, but actually perform far better than a simple random search. 
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4 Cartesian Genetic Programming  

This chapter describes the inner workings of a Cartesian Genetic Program; for a brief history 

and related background literature see the chapter entitled Background Literature. The 

information given in this chapter is mainly taken from the Cartesian Genetic Programming 

section of Julian Miller's book [15]. 

Cartesian Genetic Programs are often described as "directional acyclic graphs” i.e. a graph 

structure which is unidirectional and which does not contain any feedback. The graph in this 

case is a two dimensional grid of nodes indexed by x and y coordinates; hence "Cartesian". 

The functionality of each of these nodes is described by its corresponding gene which uses 

integer values to represent each parameter. These parameters describe: where the node 

gathers its inputs, the operation performed by the node and where the user can obtain the 

global outputs. Each node can obtain their inputs from previous nodes or from the global 

inputs. Cartesian Genetic Programs are often depicted by Figure 2, taken again from Julian 

Millers book [15]. 

 

Figure 2 Depiction of the Cartesian Genetic Program structure  

Figure 2 shows how each node is indexed by its corresponding position in the graph 

structure and that each node can only acquire inputs from previous columns or the global 

inputs. The lower equation in Figure 2 shows the general form of a Cartesian Genetic 

Programs chromosome (or genotype); with each node been assigned a function (F) and a list 
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of inputs (C). The outputs (O) are then be taken from any of the internal nodes. The 

parameter which describes the function of each node is called the "Function Gene"; this is 

an integer value which is used as an index in a look-up-table. The parameters which describe 

where each node obtains their inputs are referred to as “Connection Genes"; these are also 

integer values which index other nodes.  

The Cartesian Genetic Program uses three parameters to describe its structure: number of 

columns, number of rows and levels back. The number of rows and columns describe the 

"shape" of the graph; with their product dictating the maximum number of functional nodes 

within the program. Quite often however, the number of rows is set to one, as this structure 

can implement any arrangement possible with multiple rows (provided the number of 

functional nodes remains the same). The levels back parameter describes how many 

columns back each node can acquire its inputs; it therefore controls the connectivity of the 

program. Setting levels back to equal the number of columns is described as been fully 

connected.  

The following subsections describe how to: initiate the first generation, decode the evolved 

chromosomes, evaluate the fitnesses and finally generate the future generations.  

4.1 Creating the Initial Population 

An important property of all Evolutionary Computation is that the described solutions (or 

chromosomes) can always be evaluated. To achieve this, the chromosomes of Cartesian 

Genetic Programs are only allowed parameter values within certain ranges. These ranges 

must be adhered to when initialising the first population and when generating new future 

populations. 

As with many forms of Evolutionary Computation, Cartesian Genetic Programs create their 

initial population by assigning random values to the chromosomes parameters. The 

"Connection Genes" for each node is taken as a random value between zero and the 

number of previous nodes plus the number of global inputs. This ensures that the acyclic 

criterion is preserved. The "Function Gene" for each of the nodes is taken as a random value 

between zero and the number of possible functions available. The outputs are taken as a 

random value between the number of inputs and the number of nodes. Following these 

rules ensures that valid chromosomes are always generated. 
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4.2 Decoding the Chromosomes 

The decoding of  the chromosomes is normally achieved in a two part process; first derive 

which nodes are active in generating the outputs and then calculate the outputs for given 

inputs. Active nodes are those nodes whose presence is necessary in generating the 

outputs. In a Cartesian Genetic Programs chromosome there can be many inactive nodes 

and so conducting all of the internal calculations would be a waste of computational time. 

One method of evaluating which nodes are active is to take the output nodes and store their 

inputs in an "active node list". The nodes placed on the "active node list" also have their 

input nodes added to the list. This process is then repeated for each node which is placed on 

the list until the inputs are reached. The generated "active node list" is then the complete 

set of nodes necessary for generating the outputs.  

Once the "active node list" has been generated, the Cartesian Genetic Program can be used 

to generate outputs for a range of inputs. The mapping between the inputs and outputs, or 

just the outputs themselves, is often what is used to generate the fitness for each 

chromosome. The outputs can be calculated by first creating a blank matrix of the same 

dimensions as the Cartesian Genetic Program. This "output matrix" is to store the 

intermediate values generated by each active node. The first active node then generates its 

outputs from the global inputs using its corresponding function; this output is then saved in 

the "output matrix". Subsequent active nodes can then gather their inputs from, and store 

their outputs to, the "output matrix". The final outputs can then be looked up from the 

complete “output matrix".   

4.3 Creating the Next Generation  

Conventionally Cartesian Genetic Programs implement a (1 + λ)-ES to create the next 

generation. The λ members of the population are generated by mutating the single elite 

member of the previous generation. When selecting the next elite chromosome, children 

are chosen over the parent if they have equal fitness.  

The mutation method used by Cartesian Genetic Programming is called "Point Mutation"; 

see section "Mutation and/or Crossover" for further details. Cartesian Genetic Programming 

follows the same rules used when generating the initial population as it does when mutating 

a specific parameter of a given gene. This ensures that valid solutions are always generated. 
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5 Crossover Techniques 

As described in the section entitled Mutation and/or Crossover, crossover can be used to 

generate the next generation from a selected sample of the previous generation. It can be 

used in conjunction with or without the mutation operator. As this project continues the 

work of Janet Clegg [1][35], the same crossover technique is the main focus of this project. 

The crossover technique used by Clegg is called BLX-0 or Flat Crossover and is described in 

this section along with other common crossover strategies. 

5.1 Point Crossover 

Point crossover is achieved by splitting each parent chromosome into sections; by the 

placement of a point(s). The children are then generated by taking different sections from 

each of the parents to form a new chromosome.   

5.1.1 Single-Point Crossover 

Single-Point Crossover is point crossover, where the parent chromosomes are split into two 

sections. When the crossover point always splits the parent chromosomes into equal 

sections, it is referred to as Mid-Point Crossover; see Figure 3. When the single crossover 

point is selected at random it is referred to as "Simple Crossover". 

 

Figure 3 Depiction of "Mid-Point Crossover" (left) and "Two-Point Crossover" (right) 

5.1.2 Two-Point Crossover 

Two-Point Crossover is an extension on single point crossover, which employs two crossover 

points instead of one. Again the crossover points can be set to split the parent 

chromosomes into equal sections, or can be picked at random; Two-Point Crossover is also 

shown in Figure 3.  
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5.1.3 Cut and Splice Crossover 

Cut and Slice Crossover is similar to Single-Point Crossover, only different random crossover 

points are chosen for each parent. This results in variable length children chromosomes, for 

this reason it is not often used. Cut and Splice Crossover is shown in Figure 4. 

 

Figure 4 Depiction of "Cut and Splice Crossover" 

5.2 Uniform or Discrete Crossover 

Uniform or Discrete Crossover is employed by splitting the parent chromosomes into many 

sections; usually of even length (but this is not essential). The children then take their 

subsections from either parent with a given probability; usually 0.5 to ensure they contain 

an even amount of genetic material from both parents. See Figure 5 for an example of 

Uniform Crossover.  

 

Figure 5 Depiction of "Uniform Crossover" 

5.3 BLX-0 or Flat Crossover 

BLX-0 or Flat Crossover is the first crossover technique which does not simply pick the child's 

chromosomes from the parents. Instead it calculates new values based upon the parents 

chromosomes; for this reason it cannot be used when the chromosomes are represented as 

binary strings. 

Flat Crossover was first defined by Nicholas J. Radcliffe in 1991 [36] and was "affectionately 

known as Top Hat". The technique takes the two floating point representations of the gene 
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parameters and randomly selects a value between the two. The child's parameters are 

calculated by5: 

  
    

       
    

                   
    

  

  
    

       
    

                   
    

  

  
    

    
                       

    
  

Where the parameters of parent one are indexed by    
    

      
   and the parameters of 

parent two are indexed by    
    

      
  . Child one's parameters are then indexed by  

   
    

      
   and child two's by    

    
      

  . Finally    is a random value such 

that        . If for example, there were two children to be produced   would index each 

child with a value of 1,2 and   would index all of the corresponding parameters.  

It should be noted that for this type of crossover, the chromosomes are represented in a 

floating point form; as opposed to the usual integer form. This means that all of the values 

which describe each node (input locations and/or functionality) are floating point values 

between zero and one. For this reason an additional decoding level is required to convert 

back into the corresponding integer form. The equations to calculate the function index and 

node index from the floating point form are shown here6:  

                                      

                                  

Where       indexes each gene by  ,           is the total number of functions and 

          is the number of possible input nodes available to the current node under 

inspection. The floor operator truncates the given arguments e.g. the floor of 4.3 would be 

four.   

5.4 BLX-α or Arithmetic Crossover 

BLX-α or Arithmetic Crossover is another example of a crossover technique which cannot be 

applied to chromosomes represented as a binary string. It was created by L. J. Eshelman et 

                                                     
5 This form of the Flat Crossover equations was taken from a BSc cause taught by Janet Clegg at the University 
of York.   
6 Also taken from Janet Clegg's taught lecture series. 
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al [37] in 1993 and represents a more general form of Flat Crossover. Similarly with Flat 

Crossover randomly selecting parameter values for the children's chromosomes somewhere 

between the two parent values, Arithmetic Crossover picks a value between its parent’s 

values plus a small margin. This margin is dictated by α and by setting the value of α to zero 

it implements Flat Crossover.  

Each child's parameter can then be calculated using the following: 

           

                 

Where X and Y represent the two parent parameter values and C is the calculated child's 

parameter value. α is set by the user to vary how much the child's parameter values can lay 

outside the parents. The rand operation then selects a random value between the given 

parameters. This form of the equation holds for when X < Y.    

A disadvantage of this technique is that for the case where α is not equal to zero, it is 

possible for the child's parameter to be assigned a value outside of a valid range; in this case 

a repair algorithm has to be employed to fix/prevent this occurrence. 
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6 The Investigation  

This chapter describes the overall aims of the project and the objectives set to achieve these 

given aims. A timeline created to meet these objectives, described using a Gantt chart, can 

be found in the chapter entitled Project Timeline. 

The Aims section outlines the aims of the project at a high level and the Objectives section 

describes in more detail how these aims will be achieved. The Procedure section describes 

the process used to evaluate the effectiveness of the new crossover technique; as used by 

Janet Clegg et al [1]. The Hardware and Software Requirements section then discusses the 

tools needed to implement the given objectives. Finally the Risk Assessment discusses the 

possible risks endangering the project along with possible contingencies.  

6.1 Aims 

Here the aims of the overall project are stated. These aims are split into primary and 

secondary subheadings. Primary Aims 1 and 2 and Secondary Aim 1 make reference to a 

paper published by Janet Clegg et al [1]. The author's project is an extension of the work 

described in Janet Clegg's paper and therefore the paper is included in Appendix A for the 

reader’s reference.  

6.1.1 Primary Aims 

1) Evaluate whether the crossover technique used by Janet Clegg offers a statistically 

significant decrease in convergence time when solving a range of problems using 

Cartesian Genetic Programming. 

2) Evaluate whether the floating point representation and tournament selection scheme 

required for the new crossover technique changes the behaviour of the Cartesian 

Genetic Program.  

6.1.2 Secondary Aims 

1) To study further the effects of the parameters governing the effectiveness of Cartesian 

Genetic Programming, more specifically when implementing the new crossover 

technique. 
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2) To apply Cartesian Genetic Programming to a range of problems to which it has not 

previously been applied. 

6.2 Objectives  

This section describes the objectives of this project; split into primary and secondary 

subsections. By completing the given objectives the previously stated aim will be met.  

6.2.1 Primary Objectives 

1) Investigate at least three different search problems using Cartesian Genetic 

Programming with and without the new crossover technique and evaluate/compare 

their relative effectiveness using multiple statistical methods.  

2) Apply Cartesian Genetic Programming to the same search problems using the floating 

point chromosome representation necessary for the new crossover technique, but 

without the use of the crossover technique. Compare the results obtained with the 

integer form Cartesian Genetic Programming. 

3) Apply the floating point form of Cartesian Genetic Programming to the same search 

problems using the tournament selection method necessary for the new crossover 

technique; but without the use of the new crossover technique. Compare the results 

obtained with the floating point form of the Cartesian Genetic Programming without 

the tournament selection method. 

6.2.2 Secondary Objectives 

1) When evaluating the search problems, systematically optimise the Cartesian Genetic 

Program's evolutionary parameters for all experiments.  

2) Evaluate what can be learnt from the optimised parameters which appear to be most 

suitable.  

3) Where possible, and if time permits, select search problems to which Cartesian Genetic 

Programming has not yet been applied. 

4) If time permits, and the results are worthy, publish the results of this project in a 

scientific journal article.  

6.3 Procedure  

This section describes the planned procedure for carrying out the given objectives. It was 

decided that once a generalised Cartesian Genetic Program was created, a selection of test 
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cases (search problems) were to be evaluated. For each of these test cases the following 

methods would be compared:  

1) Cartesian Genetic Programming without tournament selection using an integer 

chromosome representation. 

2) Cartesian Genetic Programming without tournament selection using a floating point 

chromosome representation.  

3) Cartesian Genetic Programming with tournament selection using a floating point 

chromosome representation. 

4) Cartesian Genetic Programming using BLX-0 crossover, which requires a floating 

point chromosome representation and tournament selection.  

As the crossover technique used by Janet Clegg requires the use of a floating point 

chromosome representation, 1) and 2) would evaluate whether this new encoding is 

damaging to the search process. Another requirement of the new crossover technique is the 

use of tournament selection, 1) and 3) would therefore evaluate the effect of a tournament 

selection scheme. The two previous comparisons would evaluate whether the conditions 

necessary for the new crossover technique are damaging, beneficial or neutral to the search 

process. Once this was known, the new crossover technique, 4), could be compared to the 

integer form of Cartesian Genetic Programming. This would enable a more insightful 

evaluation than a simple comparison between Cartesian Genetic Programming with and 

without the new crossover technique. All the comparisons described here were planned to 

be completed for a range of test cases so significant conclusions can be drawn. 

When each version of the Cartesian Genetic Program is applied to each test case, the 

parameters which govern the search process are systematically optimised; in order to 

ensure a fair comparison between the different strategies. The process of optimising the 

parameters is described in Appendix B. It should be noted that these values are likely not to 

be optimum, as finding the optimum parameters for Evolutionary Computation is a search 

process in its own right; however this process should produce suitable values.  

6.4 Hardware and Software Requirements   

As this project is software/research related there are no hardware requirements; except the 

use of a PC. The freely available Eclipse IDE for Java [38] was chosen as the main 
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development software; with Mathworks MATLAB [39] also used as a “scratch-pad”. It is 

understood that most Evolutionary Strategies are implemented using languages which are 

known to be computationally efficient. Java was chosen however, due to the simple 

description of a Genetic Program in an object oriented language and because of personal 

past experience. A Dropbox [40] account was created to save documents and code on a 

remote server. This server could then be synced with local folders on multiple computers, 

ensuring that all files are backed up and enabling coding from multiple locations without 

having to deal with code management. 

6.5 Risk Assessment  

As this is a software/research related project, the main risks surround implications for the 

project itself rather than real world “health and safety” concerns. The possible risks thought 

to endanger the project include: loosing digital files, poor code management, project 

overrun, project underrun and encountering severe difficulties. Each of which shall now be 

discussed with respect to the severity and likeliness of the risk; along with the prevention 

tactics used to avoid/accommodate these risks.  

6.5.1 Loosing Files 

The possibility of losing digital files was very high due to the ease of deletion and the 

possibility of computer failure. The severity of losing work becomes heightened as the 

project progresses; due to the fact there is more to lose. Losing work towards the end of the 

project would be massively detrimental and possibly an un-correctable situation. The 

likeliness of losing work is quite high; if sufficient care is not taken when storing all digital 

files. The methods used to prevent the losing of digital files were: saving all work to an 

online Dropbox account [40] and conducting weekly backups to an external hard drive.    

6.5.2 Poor Code Management  

Specific code management is essential for all but the smallest projects. The management of 

code has two parts: preventing the loss of completed works and dealing with version 

control. The losing of completed code followed the same method outline as the previous 

section, Losing Files. Version control is important because during code development it 

would quite likely that changes to the code may result in a program which no longer 

operates correctly; in these situations it can be highly beneficial to revert back to a working 
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version. The likeliness of needing to revert to a previous state during development is very 

high. To enable this functionality, code was downloaded to the current machines hard drive 

during editing and only re-uploaded when fully operational. If at any point the code saved to 

the online Dropbox was found to be in error, it would be reverted to the last weeks backup; 

with the maximum loss of seven days work.  

6.5.3 Project Overrun  

A project overrun is the situation where the workload to be completed is no longer possible 

in the available time frame. The severity of the project not been completed on time was 

considered very high as there was a fixed deadline to be adhered to. Project overruns are 

very common due to the difficulty of correctly anticipating how long each aspect of the 

project will take; and anticipating all aspects of the project. In order to prevent the project 

overrunning, the project timeline was constructed to include activities which would be 

reduced and/or removed if necessary.   

6.5.4 Project Underrun 

A project underrun is the opposite of a project overrun; it becomes apparent that there is an 

insufficient workload to be completed and the project prematurely comes to an end. This 

situation is far less severe than a project overrun; as a final report will be completed before 

the deadline. It does however indicate poor project management and that more could have 

been achieved in the available time. The likeliness of an underrun occurring is far less than 

an overrun, but still possible due to the inaccuracies in predicting how long each aspect of 

the project will take. A project underrun is prevented by including activities in the project 

timeline which would be added if time become available.   

6.5.5 Encountering Difficulties  

As with all projects, it was possible that a problem would be reached which the author could 

not resolve; this may be: coding related, logic related, research related or mathematical. 

This situation could be quite damaging if the difficulty encountered relates to the core of 

the project. The likelihood of encountering a major difficulty is quite high due to the testing 

nature of final year projects. If a difficulty is encountered the following steps were to be 

taken: search the internet for related issues, search the library for related topics and finally 
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refer to the project supervisors. If the difficulty remains than the project would have to be 

adapted to avoid its constraint.  
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7 Possible Test Cases  

This chapter describes a range of different possible test cases for which the new crossover 

technique proposed by Janet Clegg [1] could be evaluated. The evaluation would be via a 

comparison with normal Cartesian Genetic Programming. There are two main themes of 

test case shown here; those which optimise a set of parameters (7.1, 7.7 and 7.10) and 

those which evolve programs which solves a given problem (7.2, 7.3, 7.4, 7.5, 7.6, 7.8 and 

7.9). One of the advantages of Cartesian Genetic Programming is its ability to be applied to 

evolving programs rather than simply optimising parameters; this is why most of the test 

cases fall into this category. The test case 7.9 involves evolving a finite state machine; an 

application of Cartesian Genetic Programming which is relatively unexplored in the 

literature.  

7.1 Function Optimisation  

Many real world (and theoretical) problems can be reduced to the task of optimising a 

number of predefined parameters. Cartesian Genetic Programming can be applied to 

optimising parameters by an arrangement where the outputs of a particular chromosome 

are then the given inputs to a function. The function is then run, and the returned result 

used to determine the fitness.   

For this test case the functions to be optimised are multi-dimensional graphs, where the aim 

is to find the set of coordinates which locate the minimum point. The inputs to the Cartesian 

Genetic Program are a set of arbitrary constants. The possible Cartesian Genetic Programs 

functions are a set of mathematical operands with their outputs limited to plus/minus one. 

The generated outputs for the given chromosome are scaled to meet the range of possible 

graph function inputs. When finding the minimum point in the graphs, the lowest returned 

value represents the fittest chromosome.  

Possible functions for this test case are: the Griewank Function, the Shekel Function and the 

Rosenbrock function; these functions are now described in further detail.   
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The Shekel Function was developed as a test function by J. Shekel for function optimization 

techniques [41]. The function is described by the following equation and matrices of 

constants: 
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The Shekel function has its global minimum value of -10.5364098167 at the coordinates 

4.00075, 4.00059, 3.99966 and 3.99951. For the readers interest a limited view of the 

Shekel Function is shown in Figure 6. 

 

Figure 6 The Shekel Function limited to two variables  
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The Griewank function was developed by A.O. Griewank [42] and is an interesting equation 

as the number of minima grows exponentially with the number of dimensions used. The 

function is described by the following equation: 

              
 

    
    

 

 

   

      
  

  
 

 

   

 

-600 ≤ xi ≤ 600 

The Griewank function has its global minimum value of zero at the point where all of the 

coordinates are also zero. The value of n determines the number of variables used. The 

Griewank function is shown in Figure 7 with n set as two. 

 

Figure 7 The Griewank function 

The Rosenbrock function7 is a commonly used optimization landscape introduced by 

Howard H. Rosenbrock in 1960 [43]. The function has an interesting characteristic of its 

main valley been easily found, but the minima of the whole function very difficult; due to 

the near flat bottom of the valley. The two variable function is described by the following 

equation: 

 

                                                     
7 Also communally referred to as the Rosenbrock's valley or the Rosenbrock's banana function. 
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       -2≤ x ≤ 2 
-2≤ y ≤ 2  

 
The Rosenbrock function has a minimum value of zero at the position (x,y) = (1,1) and is 

shown in Figure 8. 

 

Figure 8 The Rosenbrock function 

A possible extension to this investigation is to mark the positions inspected by the Cartesian 

Genetic Program on the graph being evaluated. The results may just be interesting to 

observe, but they may also show additional information on how evolution has approached 

the problem.  

7.2 Symbolic Regression (Curve Fitting) 

It is often necessary to plot a line of best fit to a given sample of data. This process can: 

show trends, describe whole data sets with one equation and sometimes reveal hidden 

relationships within the data which offer insight into the inner workings of the data source. 

Cartesian Genetic Programming (and more generally Genetic Programming) is well suited to 

symbolic regression, as it is perfectly adapted to trying different combinations of 

mathematical operation in order to find the best solution. This is different from Genetic 

Algorithms, which in its simplest form only vary the weightings of predefined mathematical 
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operations. The fitness is often taken as the sum of the differences between the predicted 

values and the actual values; resulting in zero representing a perfect solution.  

For this test case the two equations used by Janet Clegg [1], originally taken from Koza's 

work [13], would be evaluated. These equations would be used to generate a data set for 

which the Cartesian Genetic Program would try to fit its own equations too. It is also 

possible to test these equations with the addition of noise; to mimic a real world situation 

with non-perfect data. 

               

              

The inputs to the Cartesian Genetic Program would be the independent variables used in 

the equation or experiment. The functions used within the Cartesian Genetic Programming 

nodes would be simple mathematical operands: addition, subtraction, multiplication and 

division. 

7.3 Synthesis of Boolean logic  

Designing the necessary network of Boolean logic gates can be tedious for all but the 

simplest truth tables. There are algorithms which can be followed to arrive at solutions, but 

they are "long winded", use only certain logic gates and often do not lead to the “best” 

solution.  

From the start, Cartesian Genetic Programming used the synthesis of Boolean logic test case 

to demonstrate its effectiveness [16]. This type of problem requires that the algorithm 

produces the network of logic gates necessary to implement a given truth table; something 

Cartesian Genetic Programming is perfectly adapted to do. It therefore makes a suitable test 

case for historic reasons and for the fact it utilises a strong quality of Cartesian Genetic 

Programming.  

Here the test case would be to implement the logic for a given truth table e.g. that of a two 

bit multiplier. The inputs to the Cartesian Genetic Program would be the sets of inputs from 

the truth table and the outputs of the Cartesian Genetic Program would be the outputs of 

that configuration of logic gates. The fitness function would award points for every 
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incorrectly implemented line of the truth table. More complex fitness functions can be 

implemented e.g. by awarding points for using fewer logic gates thus promoting smaller 

circuits. The node functions themselves would be Boolean logic gates. 

7.4 Wall Follower  

A "Wall Follower" is a well known standard maze solving algorithm which reacts only to its 

immediate surroundings; therefore having no memory of its previous positions. This test 

case is to evolve the logic network which takes inputs from its surroundings and then has to 

navigate around a "world" gaining points when following walls. The "world" in this case is a 

two dimensional grid with squares representing free space or walls, see Figure 9 (the blue 

square represents the starting position). The "Wall Follower" would be able to "see" the 

eight squares surrounding its current position and react by moving: up, down, left or right. 

These possible moves are mapped to the two binary outputs of the Cartesian Genetic 

Program by assigning binary representations to the moves e.g. 11 could represent a move to 

the right. The "Wall Follower" would not be able to walk through walls and would be 

allowed a given number of moves to gain as many points as possible. Each section of the 

wall would only contain one available point; to prevent the solution of simply moving back 

and forth along the same path. Although in this scenario we are not trying to solve a maze, 

the "Wall Follower Algorithm" should provide a solution to this task8. 

 

Figure 9 Possible layout of the "wall followers" world 

This process is similar to the Synthesis of Boolean logic, except the correct truth table is not 

known in advance; instead this is also being evolved along with its implementation. A 

                                                     
8 Specifically mazes with no internal loops. 
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possible advantage of this test case is that it would make an interesting example to show in 

the final presentation; the effectiveness of the current solution can be shown at different 

generations via an animation. 

7.5 Wall Avoider  

The "Wall Avoider" test case is similar to the "Wall Follower", except the aim is now to 

navigate across the "world" without "bumping" into any walls. Points are awarded for every 

movement which is made towards the "finish line" (along the x-axis). The game is 

terminated: if the finish line is reached, after a given number of movements, or if an 

attempt is made to walk through a wall. An example of a possible "world" is shown in Figure 

10, where the yellow checkers represent the "finish line" and the blue square represents the 

starting position.  

 

Figure 10 Possible layout of the "Wall Avoiders" world 

In order to make this task possible, it is thought that the crudest memory is necessary; this 

memory is of the previous move undertaken. Without memory, the "L" shape in the "world" 

is thought to be an impossible challenge. Although it is likely that other sections are also too 

difficult without a more extensive knowledge of the surrounding "world". To implement this 

crude memory the previous move (or previous output) is to be fed back to the available 

inputs of the Cartesian Genetic Program. It is also assumed that when the game is started 

the previous move was a step towards the "finish line" (left in the shown figure). This test 

case may require a large number of generations before a solution is found, but it is thought 

that a solution will eventually be found (at least to some extent).    
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7.6 Fibonacci/Prime Number Sequence Predictor  

This test case is similar to the symbolic regression test case, except here the curve to be 

fitted is the Fibonacci or prime number sequence. Determining a prime number by its index 

alone is one of the great problems surrounding mathematics. Prime numbers find 

application in cryptography algorithms, hash tables and pseudorandom number generators. 

The task of predicting prime numbers using Cartesian Genetic Programming has already 

been attempted by James Walker and Julian Miller [44]. In this paper two tasks were 

undertaken: the prediction of the prime numbers un-consecutively and consecutively. Each 

of these two tasks was attempted using two different methods. The first method was 

symbolic regression using the functions: addition, subtraction, multiplication, protected 

division, and protected modulus. The second method was to evolve a digital circuit using 

multi-chromosome Cartesian Genetic Programming [45]; where the genotype is comprised 

of multiple chromosomes each responsible for a single output. The outputs of this digital 

circuit were used as the coefficients of a binary representation of the predicted prime 

number.   

Cartesian Genetic Programming has also been applied to the task of predicting the Fibonacci 

Series undertaken by Simon Harding, Julian Miller and Wolfgang Banzhaf [28]. This paper 

used an adapted form of Cartesian Genetic Programming called Self Modifying Cartesian 

Genetic Programming; see the section on Self-Modifying Cartesian Genetic Programming for 

further details. Although this process could also be achieved using symbolic regression. 

For this project the test case would be achieved using straight forward symbolic regression 

and not by any of the other methods described. It would therefore be a similar test case to 

Symbolic Regression (Curve Fitting) but to a more real world (and interesting) application. 

7.7 Travelling Salesman  

The "Travelling Salesman" is a famous NP-hard computer science optimization problem 

developed around the 1950's; although its exact history appears to be unknown. Just for 

fun, see Figure 11 for its appearance in the Webcomic XKCD [46]. 
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Figure 11 A Travelling Salesman Solution as depicted by the XKCD Webcomic 

It is possible to apply Cartesian Genetic Programming to the "Travelling Salesman Problem" 

by setting the number of outputs to equal the number of cities. These outputs are then 

mapped to an ordered list of the cities. The Cartesian Genetic Program outputs are then 

sorted into numerical order, thus creating a new order of cities9. This process is shown in 

Figure 12.  

The inputs to the Cartesian Genetic Program are a range of arbitrary constants and the node 

functions would be a set of mathematical operands. In Figure 12 the outputs are limited to 

be between zero and one; but this does not have to be the case. 

The "Travelling Salesman" problems would be taken from [47], a group in association with 

the Heidelberg University who have a substantial archive of "Travelling Salesman" problems; 

along with their current best known solutions. 

                                                     
9 This method was originally derived by Julian F Miller during a taught 4th year lecture course at the University 
of York in 2011. The concept was then investigated by a fellow student and friend Matthew Glenister for his 
assessment of this module.     
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Figure 12 Depiction of the ordering process used for generating "Travelling Salesman" permutations 

7.8 Even Parity  

This test case is similar to the test case described in the Synthesis of Boolean logic section, 

except here the truth table to be realised is now that of the parity bit needed to ensure 

even parity. As described in the Embedded Cartesian Genetic Programming section, 

calculating the parity for a bit string is quite a difficult task when only using the logic gates: 

AND, OR, NAND and NOR. Therefore to provide a higher level of difficulty only these gates 

are provided for this test case.  

An advantage of this test case is the size of the bit string can be increased and the time 

taken by the Cartesian Genetic Program to converge on a solution recorded for each length. 

A reasonable comparison can then be made between normal Cartesian Genetic 

Programming and the new crossover technique over a range of problem complexities.  

7.9 Artificial Ant  

The Artificial Ant Problem [48] was developed by D Jefferson et al in 1991 and used by Koza 

in his book [13]. The problem to be solved is to navigate an "ant" around its "world" so as to 

gather the maximum amount of "food" in a limited number of movements. The "world" in 

this case is a two-dimensional toroidal grid with some locations containing "food"; see 

Figure 13 taken from [48]. 
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Figure 13 A possible layout of a "World" used for the "Artificial Ant Problem" with the most preferred route shown 

The "ant" operates in a sense-and-act loop, where its only sense is to "see" the state of the 

square ahead, see Figure 14 also taken from [48], and its possible actions are: move forward 

one step, turn right (without moving), turn left (without moving) or do nothing. As can be 

seen in Figure 13, the optimum path to be followed increases in difficulty; the points that 

are awarded at various positions along this route are also shown. 

 

Figure 14 Depiction of the "ants" ability to see one square ahead 
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D Jefferson describes two different methods of solving the "Artificial Ant Problem"; the first 

using finite state machines and the second using artificial neural networks. It is the finite 

state machine representation which would be undertaken by this test case. This approach 

would be achieved by defining seven outputs for the Cartesian Genetic Program. The first 

two of these bits would describe the next action of the "ant" e.g. 10 could decode to "turn 

right". The remaining five outputs would be fed back as inputs to the Cartesian Genetic 

Program, these would represent the next state of the finite state machine; see Figure 15. 

This approach is thought to produce a representation which can be converted into a finite 

state machine. 

 

Figure 15 Possible Architecture to implement a Finite State Machine 

The implementation of sequential circuits using Cartesian Genetic Programming has been 

indirectly studied before [49] by J Walker et al; whilst automating code generation for 

MOVE processors. Julian Miller also described using the artificial ant test case in the original 

formal paper on Cartesian Genetic Programming [17]; this paper however did not decode 

the results into a finite state machine. It therefore appears that the evolution of finite state 

machines using Cartesian Genetic Programming has been relatively uninvestigated. The 

creation and implementation of finite state machines using Evolutionary Computation has 

however been undertaken using other strategies. B Ali et al gives a detailed example of 

using Genetic Algorithms to design sequential logic circuits [50]. Interestingly, Simon Lucas 

describes the use of Cartesian Genetic Programming for evolving Finite State Transducers (a 

close relative of Finite State Machines) as further work in a published paper [51]. 
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7.10 Game of life 

As a final (and probably far too ambitious) test case, the evolution of starting arrangements 

to be used in Conway’s “Game of Life” [52] would be investigated. The “Game of Life” is one 

of the simplest forms of cellular automaton; a form of computing where the next state of 

each component (or cell) is dependent on its current state and the state of neighbouring 

cells. Using simple rules, cellular automaton has been shown to create complex structures 

and has been an area of interest for a number of decades. Figure 16 shows a standard 

depiction of the "Game of Life" taken from a web based Java Script implementation of the 

"Game of Life" [53]. 

 

Figure 16 Depiction of Conway's Game of Life 

A paper written by D Kazakov et al [54] used Genetic Algorithms to try and identify sets of 

rules to govern the “game of life”. The aim was to discover rules which were most likely to 

support “interesting” life. The work assumed a relationship between the entropy of the 

system and the appearance of “interesting” life. High entropy systems were considered too 

chaotic to support “interesting” life and low entropy systems were also thought to contain 

nothing of interest. It was therefore assumed that a level of entropy somewhere between 

the two extremes would be an indication of the most “interesting” life. The investigation 

calculated local entropy values around the grid, identifying areas of high entropy in an 

otherwise low entropy "world".   
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Another application of Evolutionary Computation applied to the “game of life” is to evolve 

initial arrangements which produce “interesting” behaviour. These typically follow the 

original rules described by Conway: 

1. Survivals. Each live cell with two or three neighbouring cells survives for the next 

generation. 

2. Deaths. Each live cell with four or more neighbours dies (is removed) from 

overcrowding. Every cell with one or fewer neighbours dies from isolation. 

3. Births. Each dead or empty cell adjacent to exactly three neighbours –no more, no 

less–comes to life. 

Two examples of this type of work are: E Sapin et al [55] who successfully evolved 

configurations which created “Glider Guns” (a structure which creates further structures) 

and Hector Alfaro et al [56] who successfully re-discovered many previously known 

structures.  

This test case would follow the same approach as D Kazakov et al [54], the difference would 

be however, to try and identify “interesting” structures using the standard rules. This would 

be an ambitious test case and is likely not to be completed as a result. It would however 

make for a interesting investigation as it combines two large fields in artificial intelligence: 

evolutionary Computation and Cellular Automata. 
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8 Project Timeline 

This Chapter describes the timeline which was originally constructed to guide the project. 

The timeline described was not "set in stone" as it was considered more than likely that 

different stages of the project may take more or less time to complete than anticipated. It 

was however, intended to ensure the project was completed on time and give a sense of 

how much work was needed to be completed. The weekly timeline to be followed is shown 

in Figure 17; each stage of which is now discussed in further detail.   

8.1 Research and Reading 

This stage of the project was intended for research and reading of related works. Only two 

weeks were allocated for this stage of the project as a general background had already been 

achieved during previous studies. This stage was split into four subsections; this was 

intended to give an indication of the type of topics researched, although other areas were 

also to be investigated. 

8.2 Initial Report  

The writing of the initial report was planned to begin as early as possible; this was so an 

initial structure could be formed which would then guide the research. It was intended that 

the initial report would constitute much of the same information as used in the first few 

chapters of the final report. The initial report was intended to be continuously developed 

until the deadline is reached; shown in red on the timeline.  

8.3  General Code Design & Production 

The general code was defined as the code used throughout all of the test cases; a 

generalised Cartesian Genetic Program. The code was to be designed so that it could easily 

be adapted for each test case and for the new crossover technique. The design was 

intended to start by defining a detailed specification; which would then be used to form a 

class diagram. Genetic Programs are considered fairly simple to create; therefore three 

weeks were allotted for this stage.    
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8.4 Test Case 1, 2 and 3 

It was thought that as the project progressed, the author’s level of competency at 

implementing new test cases would improve. It was also thought, that as the project 

progressed more challenging test cases would be selected. For this reason the same time 

period was allocated for each test case. Each test case was to be: designed, coded and 

tested as a regular Cartesian Genetic Program, before being implemented using the new 

crossover format and re-tested. The evolutionary parameters for both methods would then 

be optimised for the particular test case followed by multiple runs of solving the given test 

case. Each test case section ends by writing up the observed results; this ensures that the 

creation of the final report was completed throughout the project and not left until the end.  

If it was found that the project was too ambitious and there was not enough time available 

to complete the proposed work, the number of test cases would be reduced. All of the aims 

of the project could still be (in part) achieved when using fewer test cases and would be far 

more conclusive than attempting many test cases to a low standard. If however it was found 

that there was ample time to complete the proposed workload, further test cases could 

then be completed. 

8.5 Publish Results 

It was a personal aim to attempt to publish the results of this project; assuming the results 

were worthy of publishing. This would require the writing and submission of an academic 

paper to a relevant journal and would therefore take time to complete. Two weeks were 

allocated to the research and production of this paper, but as this stage was not essential it 

could be removed if the project began to over-run.  

8.6 Finish Report 

This stage comprised the completing and submission of the final report. It was intended that 

the final report would be completed throughout the project e.g. the design and coding 

chapters to be completed during the design and coding stage and each test case written 

upon completion. This time was allocated to writing the concluding chapters of the report 

and completing the final edit before submission.   
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8.7 Presentation 

Two weeks were allocated for the production of the final presentation. This also included 

time for the preparation of the viva. 



 

50 
 

 

 

Figure 17 Project Timeline 
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9 Implementing the New Crossover 

Technique  

This chapter explains how the new crossover technique is implemented throughout this 

project. The crossover method used is BLX-0 (BLX-α implemented with α set to zero) as used 

by Janet Clegg [1] and described in the Crossover Techniques Chapter.  

The implementation of BLX-0 crossover requires the use of a selection scheme to choose 

which parents are to be used to generate the child chromosomes. This is unlike most 

implementations of Cartesian Genetic Programs, which use elitism and asexual reproduction 

to generate the next population. The selection scheme used by Janet Clegg, and therefore 

by the author for this project, is tournament selection. Tournament selection is where a 

predefined number of the current population are selected to enter a “knock-out” 

tournament, where the winners are selected as the parents. In the authors (and Janet 

Clegg's) implementation, a simple tournament is used. All of the chromosomes are entered 

into the same round of the tournament and the two chromosomes with the best fitnesses 

are the winners. Interestingly, there currently appears to be no literature describing if 

tournament selection offers an advantage or disadvantage to Cartesian Genetic Programs; 

although via email Julian Miller stated that in his experience he has never found tournament 

selection to offer an advantage.  

BLX-0 crossover also requires that the chromosomes are represented in a floating point 

form; as described in the Crossover Techniques Chapter.  
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The implementation used is shown via a flow chart in Figure 18. The sequence of events 

shown is undertaken each generation to create the next population from the current 

population. The process is also described here: 

1. Start with the current population 

2. Calculate a fitness for each member of the population 

3. Promote the best μ member of the current population directly to the next 

population 

4. Select a predefined number of the current population to be entered into a 

tournament  

5. Select the best two members of the tournament to be the parents 

6. Pick a random floating point number between zero and one 

7. If ( random number < crossover percentage) use crossover to create two children 

and add them to the next population 

8. If ( random number >= crossover percentage) Add the two parents to the next 

population 

9. If(next population < population size) repeat from 4 

10. Mutate all of the nest population except the promoted elite   
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Figure 18 Flow chart showing the operation of BLX-0 crossover technique – as used for this project 

For later reference, the process shown in Figure 18 is implemented by the Reproduction 

Class in the author’s code.   

It is seen here, that the crossover percentage variable controls how often crossover is used 

to generate the children. In situations where the crossover is not used, the children are 

clones of their parents. If crossover is not used at all (a more traditional implementation of 

Cartesian Genetic Programming) then the children of the next generation are created by 

asexual reproduction of the elite members whilst employing the mutation operator.   
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10 Specification 

This chapter describes the specification for the Cartesian Genetic Program to be used 

throughout this project. Each of the specification items is split into mandatory or optional 

and then discussed in further detail. 

10.1 Mandatory Specification 

These are specifications which are required by the project; they were all to be completed. 

1. The Cartesian Genetic Program should be easily adapted to different test scenarios 

with no (or little) change to the majority of the program.  

2. All parameter variables which govern the evolutionary process are to be stored in 

one accessible location and easily edited.  

3. The parameters are to be parsed within the code to check for errors, unrealistic 

values and discontinuities.  

4. The parameters must include:  

a. Number of runs10 (integer value) 

b. Number of generations (integer value) 

c. Mu (integer value) 

d. Lambda (integer value) 

e. Floating point representation (Boolean flag)  

f. Crossover (Boolean flag) 

g. Percent crossover (percentage) 

h. Percent mutation (percentage)  

i. Chromosome structure (number of inputs/function nodes/outputs) 

5. The program must terminate when defined termination conditions are met. These 

termination conditions must include: 

a. Maximum number of generations has been reached  

b. The process has reached a solution which is considered acceptable  

6. All experiments must be repeatable 

                                                     
10 The number of runs parameter refers to the number of times the experiment is repeated.  
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7. Details of each experiment are to be automatically generated and stored for later 

inspection. These details must include: 

a. A full breakdown of the parameters used 

b. The final state of each run: 

i. The final best fitness  

ii. The generation on which this was achieved 

iii. The standard deviation of the chromosome fitnesses on the final run 

iv. The number of active nodes in the best chromosome  

c. A full breakdown of each run: 

i. Best fitness at each generation 

ii. Standard deviation of the fitnesses at each generation 

iii. Number of active nodes in the best chromosome at each generation 

iv. Average number of active nodes at each generation 

d. The best fitness at each generation averaged across all runs 

e. The structure of the best chromosome found by each run 

10.2 Optional Specification  

These were specification which would be implemented if time were available.  

8. The ability to easily change the crossover being employed.   

a. Such as being able to change the alpha parameter in BLX-α crossover 

9. The ability to use variable crossover (Such as used by Janet Clegg) 

10. The ability to include extra termination conditions 

a. Such as if the best solution has not changed for a given number of 

generations 

10.3 Specification Breakdown 

This section explains and justifies each item given in the specification.  

Specification 1 is to ensure that unnecessary time is not spent re-writing large sections of 

the Cartesian Genetic Program for each new test case. It should be possible to create a layer 

of abstraction between the fitness function and the Cartesian Genetic Program; so new test 

cases can be easily implemented.  
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Specification 2 is to ensure changing the parameters of the Cartesian Genetic Program is as 

simple as possible. Having all the parameters defined in a single place removes the task of 

locating every instance of their use within the code. This practice is common for medium 

scale programs and is particularly useful in this case as the parameters are to be changed 

regularly.  

Specification 3 is to ensure that the parameters chosen for a particular experiment are valid 

both individually and with respect to the other parameters. This ensures that time is not 

wasted on invalid experiments which never correctly operate and reduces the debugging 

process.  

Specification 4 lists the minimum number of parameters which are required for the 

proposed experiments to be undertaken.     

Specification 5 describes constraints that should always be placed upon Evolutionary 

Computation; ensuring the search process does not continue indefinitely. The given 

termination conditions (a and b) are standard termination conditions and are therefore used 

for this project. 

Specification 6 describes a common requirement of all scientific experiments. It could be 

important that a previous experiment is re-investigated and as a result this feature must be 

included.  

Specification 7 is to ensure that the results of each execution of the program are stored in a 

human readable form after the program has terminated. This enables results to be stored 

and later compared to those of other experiments. 

Specification 8 is included as it may be interesting to evaluate how effectively Cartesian 

Genetic Programming operates with other forms of crossover. Therefore the code should be 

structured in such a way that a modification to another crossover method is easily 

implemented. 

Specification 9 is included as variable crossover is a slight modification on the BLX-0 

crossover; as used by Janet Clegg and described in her paper[1]. It is possible that this 
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crossover method would be investigated at a later stage; as a result the design should allow 

this modification to be easily implemented. 

Specification 10 is included as there may have been a requirement for different termination 

conditions to be implemented for different test cases. This modification should be easily 

implemented. 



 

59 
 

11 Cartesian Genetic Program 

Production 

This Chapter discusses the design process used to plan, construct and test the code used 

throughout this project. This chapter begins by outlining an Initial Design which was created 

in order for coding to begin as early as possible. The second section, Meeting the 

Specification, describes how the initial design chosen meets each criteria within the 

specification given previously. The Code Production section describes the order in which the 

Cartesian Genetic Program is coded, tested, pieced together with the other sections of code 

and re-tested. The chapter closes with a section briefly covering the Final Design. 

11.1 Initial Design 

It was decided that many aspects of the design would only be appreciated once the coding 

stage had begun; as a result, the coding was started as early as possible. Of course one 

cannot begin coding blindly, and so this section describes the initial quick design which was 

completed so coding could begin.  

The Simplest way to describe the design is to first show the chosen internal structure of the 

code via a Class Diagram. For those not familiar with Object Orientated Programming, 

Classes are similar to structures in the procedural programming language C, only in Object 

Orientated Programs everything must be described as a Class. See Figure 19 for the initial 

Class Diagram of the author’s Cartesian Genetic Program. The arrows in this simplified Class 

Diagram show which Classes are dependent on other Classes e.g. the Fitness Class shown is 

using the functionality provided by the FunctionSet Class. 
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Figure 19 Initial Class Diagram of the author’s Cartesian Genetic Program 

As with all non-trivial programs, this Cartesian Genetic Program is implemented using sub 

modules, or sub Classes, to break up the design and implementation task; as seen in Figure 

19. These sub Classes are now described in detail. 

11.1.1 CGP 

The CGP11 class is treated as the main function and is used to implement the high level 

functionality of the Cartesian Genetic Program. This class employs the functionality of other 

sub classes to carry out its operations. This involves producing an initial population of 

chromosomes, assessing their fitness, checking if the termination conditions have been 

reached and also generating the next population. It is also responsible for managing large 

numbers of runs so statistics can be generated. 

11.1.2 Parameters  

The Parameters Class is used to store all of the parameters which are to control the 

Cartesian Genetic Program. All of these parameters are stored in a global manor, so they 

                                                     
11 CGP is the acronym for Cartesian Genetic Program or Cartesian Genetic Programming. 
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can be accessed from anywhere within the code. The Parameters Class is also responsible 

for parsing the parameters, ensuring they are valid, and producing useful error messages if 

they are not. 

11.1.3 Population 

The Population Class provides access to, and stores, all of the chromosomes within the 

current population. It is also used to access statistics surrounding the overall population, 

such as the best or average fitness and the standard deviation of these fitnesses. The 

Population Class is also used to create the initial population of random chromosomes.  

11.1.4 Chromosome 

The Chromosome Class is used to provide access to all of the genes which make up each 

individual chromosome; these chromosomes then comprise the population. It also provides 

access to specific statistics for each chromosome such as its fitness and the number of 

active nodes. The Chromosome Class is also used to create the initial structure of the genes 

within each chromosome and ensure they represent valid representations.  

11.1.5 Gene 

The Gene Class is used to provide access to the parameters which make up each gene of a 

given chromosome. These parameters include: the gene type (function or output), input 

locations, output locations and the nodes functionality. It is also responsible for creating 

valid random values for each parameter when a new chromosome is generated.  

11.1.6 Fitness 

The Fitness Class is responsible for taking a given population of chromosomes and 

calculating the fitness to be assigned to each. This requires the use of the FunctionSet Class 

to implement the functionality of the function genes. The Fitness Class is also used for 

calculating and assigning the number of active nodes to each chromosome. Knowing which 

nodes are active helps reduce the computational time required to analyse each 

chromosome; as only active genes need to be evaluated. This Class is one of two which had 

to be altered when applying the Cartesian Genetic Program to different test cases. 
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11.1.7 FunctionSet 

The FunctionSet Class is responsible for implementing the functionality of the function 

genes within each chromosome. It is also responsible for storing the range of functions 

which can be selected by the function genes. This is the second of the two classes which 

have to be altered when applying the Cartesian Genetic Program to different test cases. 

11.1.8 Termination 

The Termination Class is responsible for checking if any of the termination conditions have 

been reached. This is achieved by the Termination Class having access to the current 

population and generation. If any of the termination conditions are reached the current run 

of the Cartesian Genetic Program is terminated. If the current run is terminated, the 

Termination class is also responsible for calling the Log Book Class to create a record of each 

run.  

11.1.9 Reproduction 

The Reproduction Class is used to generate the next population from the current. This is 

achieved using a range of methods; depending upon which strategy is currently under 

investigation e.g. crossover or no crossover. Its internal operations also vary depending 

upon the evolutionary parameters described in the Parameters Class, for example: mutation 

percentage, crossover percentage, floating point representation. 

11.1.10 LogBook 

The LogBook Class is used to save all of the results in human readable .txt documents. The 

detail and depth of the results saved depends upon parameters set in the Parameters Class. 

11.2 Meeting the Specification 

This section describes how the initial design chosen meets each item described in the 

Specification chapter.  

Specification 1 is achieved by ensuring that the code is structured such that very few areas 

in the code need to be altered in order to implement new test cases. The specificFitness 

method within the Fitness Class and the FunctionSet Class are the only areas within the 

code which need to be altered when implement different test cases. Although implementing 
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different test cases still may not be trivial for some of the given examples, it requires no 

major change to the Cartesian Genetic Program. 

Specification 2 is achieved by storing all of the evolutionary parameters in one accessible 

Parameters Class, which can then be edited to change their values. It was considered that it 

may have been more suitable to store the parameters in a .txt document and read them in 

to the program; but as only the author uses the code this extra user-end simplicity seemed 

unnecessary.  

Specification 3 is also achieved within the Parameters Class by employing a parser which 

checks the given parameter values before starting the Cartesian Genetic Programming 

section of the code.  

Specification 4 is achieved by storing all of the given parameters as editable variables within 

the Parameters Class. 

Specification 5 is achieved by employing a dedicated Termination Class, called each 

generation, to inspect if any of the termination conditions have been reached. If one of the 

given conditions has been reached, then the class terminates the current run. 

Specification 6 is achieved by ensuring that the pseudo random number generator (used 

within the code) can be given a “seed” which ensures that it produces the same random 

numbers each time. This ensures that if the same experiment is repeated, all of the random 

variables are the same; hence the same results will be generated.     

Specification 7 is achieved by employing a dedicated LogBook Class which contains many 

methods responsible for storing all of the given details of each experiment in a human 

readable "Log Book".  

Specification 8 is achieved by designing the code such that changing the type of crossover 

been employed is a simple process. Other types of crossover were not implemented 

however, as time was not available to undertake further investigations into their effect. 

Specification 9 follows the same process as Specification 8, the code was designed to make 

this a simple process, but not implemented until needed.  
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Specification 10 is similar again to Specification 8 and 9, except in this case it was achieved 

by adding and/or removing clauses from the Termination class.  

11.3 Code Production 

The code production strategy followed was to build and test each class individually where 

possible. If a class relied on other classes for its operation, then all of its dependencies were 

built and tested first; allowing then for the production and testing of the given class. To 

ensure the merging of all the classes was as simple as possible, a sideways approach was 

taken; where sections are brought together which can operate in isolation, so simplified 

testing can be undertaken. These sections are then brought together with other sections 

and continually tested. This is repeated until the entire program is constructed.  

The production sequence which was followed is given in Table 1, this sequence was 

designed to reduce the number of test stubs12 required to test each class; which reduced 

and simplified the testing stages. It can also be seen in Table 1 that the Cartesian Genetic 

Program was first written in the more standard form; which uses no crossover and an 

integer representation of the chromosomes. This was to simplify the coding and testing 

stage; the presence of crossover (which requires a floating point chromosome 

representation) was then later implemented. 

 

 

 

 

 

 

 

                                                     
12 Test subs are additional code which is written purely for the testing of other sections of code. 
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Table 1 Code Production Breakdown 

Production Stage Activity Associated Classes13 Details 

1a Build Parameters Additional parameters were added 

to the Parameters class when 

needed by other classes. 

1b Test Parameters As the Parameters class is so heavily 

used it was intrinsically test 

throughout.  

2a Build Gene Originally implemented to only work 

with an integer representation. 

2b Test Gene - 

2c Build Chromosome - 

2d Test Chromosome 

Gene 

- 

2e Build Population - 

2f Test Population 

Chromosome  

Gene 

- 

3a Build FunctionSet A simple arithmetic function set was 

used during production which 

contained '+', '-' , '*' and '/' 

operations. 

3b Test FunctionSet - 

3c Build Fitness This was implemented with a simple 

test case with the objective to 

produce a small integer number i.e. 

12. The fitness value was then the 

absolute of the difference between 

the produced value and the target 

value. 

 

                                                     
13 Almost all of the classes rely on the Parameters Class and so it is not included each time as an associated 
class. 
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3d Test Fitness 

FunctionSet 

Population14 

- 

4a Build Reproduction Originally implemented to generate 

the next population through 

mutation only (no crossover). 

4b Test Reproduction 

Fitness 

FunctionSet 

Population 

- 

5a Build LogBook - 

5b Test Logbook 

Population 

- 

6a Build Termination  

6b Test Termination 

Population 

LogBook 

 

7a Build CGP Eventually treated as the main entry 

point to the whole program. 

7b Test All Classes  

8a Adapt All Classes Implement the possibility for floating 

point representation and crossover.   

8b Test Population Now with floating point 

representation and crossover.  

8c Test Fitness 

FunctionSet 

Population 

Now with floating point 

representation and crossover.     

8d Test All Classes Now with floating point 

representation and crossover   

 

  

                                                     
14 And all of the dependencies; Chromosome and Gene classes. 
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11.3.1 Evaluation of the Coding 

During the initial coding phase the author was far too hasty with the coding and not enough 

time was spent on maintaining readable structured code. As a direct result, furthering the 

development of the code became increasingly difficult. This led to the author having to 

spend multiple days on "neatening" the code, including the addition of meaningful 

comments and structuring the code in a more standard format. Once this had been 

completed, navigating and extending the code became much simpler. It is thought however, 

that the initial "messy" stage of getting ideas down in code may be very beneficial to the 

design and learning process.   

The difficulties encountered during the coding stage were both language specific and issues 

with the author’s logic. This included confusion between the assignment of the address of 

an object (variable type) and the value(s) of that object itself. Overall however the coding 

was undertaken quickly and effectively with no major bugs or design errors.  

11.4 Final Design 

The final design followed the same structure outlined in the Initial Design section. It was the 

original intention to provide a detailed breakdown of how each Class operated and 

interfaced with the other Classes. It was decided however, that this process would be hugely 

time consuming, significantly lengthen the final report and would not contribute to the 

overall project. For these reasons a detailed breakdown has not been provided. A full Class 

diagram showing the structure of the final code is given in Figure 20 (and in Appendix D). 

This combined with the commented code also provided in Appendix D, should enable the 

reader to read and navigate the code with relative ease if this is desired.      
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Figure 20 Final Class Diagram of the author’s Cartesian Genetic Program
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12 Testing 

During the testing stages, the Cartesian Genetic Program was written to generate an integer 

number (twelve), from the inputs zero and one. The operations available to the function 

nodes were: addition, subtraction, multiplication and protected division. This ensured that 

sections of the code were operational as early as possible and aided the debugging process.  

The majority of the testing was undertaken using print statements to the consol describing 

the current state of the program and variable values. As the code became more complete, 

analysis was then achieved by inspecting the generated "log book" files. It is understood 

that more rigorous formal test strategies are available; JUnit testing is a common technique 

used for java projects [57]. It was thought however that these formal methods of testing 

would take far longer to implement (and presumably test themselves) than the actual code 

itself. It was also thought that an adequately rigorous testing process could be achieved 

through simple printouts/inspection of results and that this would help simplify the testing 

procedures. The individual testing strategies used for each class are now described in detail. 

12.1 Parameters  

As the majority of the Parameters class role is to simply store values, testing this class was 

very simple. Printouts of all of the variables stored by the Parameters class were generated 

and compared to the values which were expected to be found. The testing of the 

Parameters parser was slightly more complex. This was achieved by first entering a range of 

correct parameters and ensuring that the parser passed through the values. Values were 

then assigned to the parameters which were either not allowed or conflicted with each 

other e.g. a mu value less than one or trying to implement crossover without using the 

floating point chromosome representation. The parser was systematically checked to ensure 

it "flagged" nonsensical values and produced helpful error messages where appropriate. 

Another operation of the Parameters Class is to generate further values from the given 

parameters e.g. calculating the number of genes to mutate from the given number of 

function/output nodes and the mutation percentage. These types of operation were again 

ensured to be correct via printouts to the consol; for instance the number of genes to be 
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mutated can be displayed and compared to manually calculated versions to check for 

discontinuities.  

12.2 Gene 

When testing the Gene class, a range of values were assigned to the different gene 

parameters (input, function and output) and then printed out for observation. The Gene 

class is also responsible for generating its own random valid values for use by the initial 

chromosomes. These valid random values are determined by values set in the Parameters 

Class e.g. the number of functions available or whether the floating point representation is 

been employed. All these possible scenarios were again tested via printouts and by changing 

values in the Parameter class. 

12.3 Chromosome  

The same style of testing was also carried out for the Chromosome class as used by the 

Gene class. New random chromosomes were generated and then their gene sequence 

printed out for observation. The structure of the chromosome could then be confirmed to 

be correct e.g. ensuring each node only indexed previous nodes and checking that the 

correct number of each node type was present (function and output). The values of the 

genes within the chromosomes were then altered to ensure this functionality was 

operational; as required by the mutation operator. Finally other parameters associated with 

each chromosome (such as fitness and number of active nodes) were set and retrieved; 

although only dummy values were used.  

12.4 Population 

For the testing of the Population class, a simple test stub was made which prints each 

member of the population as a gene sequence, along with its corresponding fitness; see 

Figure 21. An initial population was then created and displayed in the console. It was again 

possible to check the structure of each chromosome and that the correct number of 

chromosomes were present in the population. Other methods (functions) associated with 

the Population class, such as generating the average fitness of the population, could then be 

tested. All of these methods were tested by assigning values to the members of the 

population and then observing the analysis completed by the code via printouts. These 
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values were then compared to the same calculation carried out by the author manually; to 

confirm the results.  

 

Figure 21 Printout of the chromosomes in each population followed by the corresponding fitness (106 in all cases)   

12.5 FunctionSet 

Once again the functionality of the FunctionSet class was tested via consol printouts. A 

range of input values were tested for each function type (addition etc) and the results 

compared to expected values. The FunctionSet class also stores parameters describing its 

operation, including function set identity and the number of functions it contained; these 

were also observed via printouts.  

12.6 Fitness 

The inner functionality of the fitness class changes depending upon the test case currently 

been evaluated; as a result it is necessary to re-test this class for each new application. 

There are however aspects of this class which remain constant independent of the test case 

being investigated. These include calculating the number of active nodes present in each 

chromosome. The testing of this functionality is achieved by printing out the calculated 

number of active nodes along with the corresponding chromosome. The number of active 

nodes can then be manually determined and compared to the calculated value. Another 

internal function used by the Fitness class, is to convert chromosomes represented using 

floating point numbers into an integer form. Again this operation can be confirmed to be 

correct by printing out chromosomes in their floating point and integer forms. The floating 
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point form of the chromosomes can then be manually converted into their integer forms 

and compared to those generated by the fitness class.  

When each specific test case was evaluated, the operation of the Fitness class was 

confirmed using similar methods.  The assigned fitness of each chromosome was displayed 

to the consol along with the corresponding chromosome. The chromosomes fitness was 

then manually calculated and compared to that generated by the fitness class.  

12.7 Reproduction 

The Reproduction class is one of the more complex classes to test, but once again is tested 

in the same format of printing various values to the consol and inspecting the results.  

The first role of the Reproduction class is to determine which members of the population 

are to be automatically promoted to the next population as elite members. This is achieved 

by sorting the population into fitness order and then selecting the top µ elite members. The 

sorting of the population also depends upon whether high or low fitness values represent 

fitter or weaker members; this is determined by the hillClimber boolean flag set in the 

Parameters class (if true high values represent the fitter members and vise-versa). The 

testing was achieved by creating a dummy population and then passing it through the 

sorting process. The order of the chromosomes within the population can then be inspected 

along with their corresponding fitnesses; to ensure they are now in fitness order. This was 

undertaken for the hillClimber flag set to true and false. 

The second role of the Reproduction class is to conduct crossover on the current population; 

to create the children which become the members of the next population (along with the 

elite members). Once again the testing was achieved via printouts to the consol. The current 

population was printed to the consol15, with each chromosome on a new line as a series of 

numbers, as seen in Figure 21. Crossover was then conducted on this population and then 

the newly generated population printed in the same format. This was initially undertaken 

for small population sizes; ensuring there was less information to be viewed at once. The 

differences between the two populations could then be inspected to identify if the 

                                                     
15 This is achieved via a method (function) called displayPopulation, which has been left in the code for future 
use. 
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crossover was operating correctly. Parameter class variables, including tournament size and 

crossover percentage, were also varied and their effects monitored.  

The final role of the Reproduction class is to conduct the mutation operator; this is 

conducted regardless of whether crossover is being employed. When crossover is not being 

employed, the next generation is comprised of the elite members of the previous 

generation and mutated versions of those elite members. When crossover is being 

employed, the mutation operator is used on all members of the population generated by 

the crossover operator. The mutation method (function) was tested by printing to the 

consol, a series of chromosomes before and after mutation had been undertaken, and then 

inspecting the differences over a range of mutation percentages. This process was carried 

out for the integer and floating point form of the chromosomes.  

The Reproduction class was then tested as a whole, by passing it a dummy population of 

chromosomes and printing the resulting new population. This was undertaken for a range of 

parameters including: population size, number of input/function/output nodes, 

integer/floating point representation, hillClimber true/false, mu values, lambda values, 

tournament size, crossover true/false, mutation percentage and crossover percentage.   

12.8 LogBook 

There are four separate "Log Book" files which can be generated: Average_Best_Fitnesses, 

Overall_Stats, individual run logs and the best chromosome. The Average_Best_Fitnesses 

stores the average fitness across all runs at each generation. The Overall_Stats saves all of 

the details of the experiments and then produces statistics including the average number of 

evaluations along with the corresponding standard deviation. The individual run logs stores 

statistics surrounding each run, along with the best fitness at each generation. Finally the 

best chromosome saves the structure of the best chromosome after each run, along with 

the number of active nodes and its assigned fitness. Figure 22 shows a selection of these 

generated "Log Book" files. 
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Figure 22 Sample selection of generated "Log Book" files 

All of these log book files were tested by printing out all of the raw data been passed into 

the LogBook class and comparing the generated results with those calculated manually. This 

was only undertaken for: small population sizes, small numbers of generations and small 

numbers of runs; to keep the manual calculations reasonable.   

The LogBook class also contains the functionality to calculate averages and standard 

deviations for given arrays. To test the operation of these methods (functions), a small test 

stub was made which contained various arrays and then printed the averages and the 

standard deviations to the consol. The same calculations could then be conducted manually 

to confirm correct operation.  
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12.9 Termination 

Testing the main functionality of the Termination class was relatively simple as there were 

only two termination criteria: the maximum number of generations has been reached or an 

acceptable solution has been found. Printouts of the current generation were made to the 

consol and multiple tests carried out to ensure the maximum number of generations limit 

was never exceeded. The best fitness was also printed alongside the current generation, to 

test if the program terminated when an acceptable solution had been found.  

The Termination class is also used to pass information to the LogBook class and so this 

functionality was tested in parallel with the LogBook class.  

12.10 CGP 

This was effectively a test of the entire Cartesian Genetic Program. As previously mentioned, 

the simple test of creating small integer values from the inputs zero and one was used as 

the test case during this testing stage. The testing process included changing different 

evolutionary parameters and observing printouts of each population and the generated log 

book files. Tests were also conducted with incompatible parameter values, to ensure the 

programs parser rejected them and gave useful error messages. The first major test case 

investigated, Repeating Janet Clegg's Experiments (given in the following chapter), was also 

partly undertaken as a testing procedure for the Cartesian Genetic Program. 

12.11 Evaluation of Testing 

The testing of the author’s code was a long and tedious process, the modular structure 

helped simplify the process, but the overall complexity and number of variables was quite 

challenging. In hindsight it is felt by the author, that a more regimented approach could 

have been followed; where a predetermined range of inputs and scenarios was decided and 

then each test case undertaken. This would have provided more substantial documentation 

for the testing stage and made the author feel more confident in the correct operation of 

the code in the early stages. Overall however, the author is confident that the code is 

operating correctly and feels that the testing strategy used was suitable for a project of this 

scale.  
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13 Repeating Janet Clegg's Experiments 

The first experiment undertaken during this project was to reproduce the results presented 

by Janet Clegg in her original paper [1]. This is to both ensure the author’s implementation 

of the Cartesian Genetic Program is functioning correctly and confirm the results obtained 

by Janet Clegg. This chapter also presents some additional experiments to confirm that the 

new crossover technique offers and advantage over regular Cartesian Genetic Programming 

without crossover. 

13.1 The Experiments 

Although several experiments are described in Janet Clegg's original paper, only two are 

repeated in this chapter. These experiments are the application of Cartesian Genetic 

Programming implemented with 0%, 25%, 50% and 75% crossover on two symbolic 

regression problems. The section entitled Symbolic Regression (Curve Fitting), in the 

Possible Test Cases chapter, describes Symbolic regression problems and the two functions 

used in Janet Clegg's paper.  

Table 2 shows the evolutionary parameters used by Janet Clegg during her experiments. 

These parameters are unusual as implementations of Cartesian Genetic Programs 

commonly use small population sizes and much lower mutation rates. As a result a further 

experiment was investigated which aimed to optimise these parameters for the first 

symbolic regression problem; identifying if the parameters used by Janet Clegg were the 

most suitable. The optimisation process used to find suitable parameters is given in 

Appendix B. 
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Table 2 Parameters used by Janet Clegg in her paper 

Parameter Name Value 

Population Size 50 

Mu 2 

Lambda 48 

Function Nodes 10 

Mutation Rate 20% 

Max Generations 1000 

Tournament Size16 4 

Runs 1000 

 

When implementing BLX-0 crossover (as used by Janet Clegg), it is a requirement that a 

selection scheme is employed during the evolutionary process; to be able to select the 

parents. Previous implementations of Cartesian Genetic Programs do not however use any 

selection scheme. Another further experiment is therefore an investigation into how the 

presents of a selection scheme affects the search process. This experiment is a comparison 

between Cartesian Genetic Programming without crossover and using no selection scheme, 

with Cartesian Genetic Programming implemented without crossover, but with a 

tournament selection scheme. In both cases the parameters were optimised to ensure a fair 

comparison. To keep the number of parameters which were optimised manageable, the 

tournament size was fixed at four when using the selection scheme. It is worth noting that 

implementing the new crossover technique with 0% crossover is in fact the same as 

implementing a Cartesian Genetic Program without crossover, but with a tournament 

selection scheme. 

The use of a floating point representation for the chromosomes is also a requirement for 

the new crossover technique. A final experiment therefore investigates if this floating point 

representation changes the behaviour of the search process. This experiment is a 

comparison between a Cartesian Genetic Program (without a selection scheme or 

crossover), represented in the integer form, with the same Cartesian Genetic Program 

represented in the floating point form. 

                                                     
16 This tournament size was not actually specified in Janet Clegg's paper and so four was used as a starting 
point. It was later realised during discussions with Janet Clegg that a tournament size of twenty was used. 
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In Janet Clegg's work each experiment was repeated one thousand times and then the best 

fitness at each generation, averaged over all runs, plotted graphically against generation. 

This approach was continued to be used, as it enables various search methods to be easily 

and fairly compared. One tweak to this approach is to replace the generation axis with 

evaluations (the product of generation and population size). This ensures that a fair 

comparison can be made when using different population sizes.     

13.2 Design  

As described in the Cartesian Genetic Program Production chapter, the code has been 

designed such that only two classes have to be altered when implement each test case: the 

Fitness and FunctionSet Classes. The specificFitness method is implemented by assigning a 

fitness to each chromosome which is the sum of the differences between the real symbolic 

function outputs and the outputs generated by each chromosome over a range of inputs. 

This results in a fitness value of zero representing a perfect solution. The range of inputs 

used to test the chromosomes, are fifty evenly spaced values between negative and positive 

one. The function set used contained the following operations: addition, subtraction, 

multiplication and protected division. Protected division was implemented by returning a 

value of one when the given denominator was less than 0.00000000001. All of the details 

described are in line with Janet Clegg’s original experiments [1]. 

13.3 Results  

The first experiment was to use the author’s code, with the parameters used by Janet Clegg, 

to repeat the results obtained by Janet Clegg on the two regression problems. Figure 23 and 

Figure 24 give the author’s results obtained for the first and second regression problem 

respectively. These plots give a comparison between the relative crossover percentages; no  

comparison is made with normal Cartesian Genetic Programming in these figures.  The 

vertical axis shows the average best fitness over all 1000 runs at each evaluation; with zero 

representing a perfect solution. 
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Figure 23 The author’s Code applied to the symbolic regression problem           using Janet Clegg's parameters 
given in Table 2 

 

 

Figure 24 The author’s Code applied to the symbolic regression problem            using Janet Clegg's parameters 
given in Table 2 

Figure 23 shows quite clearly that crossover is strongly aiding the search process, compared 

to regular Cartesian Genetic Programming implemented with a tournament selection 

scheme and using the floating point chromosome representation; shown as 0% crossover on 

the graph. It can also be seen from Figure 23, that higher levels of crossover percentage is 

more beneficial to the search process in the early stages of the search, and conversely lower 

crossover percentages are more beneficial towards the end; although this effect is subtle. 

Although Figure 23 shares characteristics with the results obtained by Janet Clegg, such as 

0% crossover converging on a solution far more slowly than higher percentages, it is not 

exactly the same; which is strange as it should have been the same experiment. After 
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discussions with Janet Clegg, it was discovered that there were a number of differences 

between her and the author’s implementation.  

The first difference surrounds how mutation percentage is converted into the number of 

actual mutations carried out on each chromosome. To calculate the number of actual 

changes made to the chromosomes during mutation, the author's code takes the product of 

the mutation percentage and the number of nodes. This was due to the author considering 

each node to represent a single gene, and the mutation percentage referring to the number 

of genes mutated; although it is now understood that this is an unusual interpretation. Janet 

Clegg calculated the number of actual changes cause to each chromosome during mutation, 

to be the product of the mutation percentage and the number of parameters which 

describe the chromosomes; this is a more standard implementation of mutation. It was 

decided however, that although this may account for some of the differences between the 

author's and Janet Clegg's results, it would not affect future comparisons over the 

effectiveness of the crossover technique; as all experiments employ the author’s 

implementation of mutation. In future test cases this difference becomes even less of an 

issue as all of the parameters are optimised for each experiment. An approximate 

conversion from the mutation percentages used by the author to a more standard mutation 

percentage is to third the values quoted in this project.     

The second difference between the implementations is that Janet Clegg's code did not 

mutate the children generated by crossover; whereas the author’s code did. It was decided 

that it is likely to be more beneficial to the search process if the children were mutated17, 

and so this was continued to be carried out. Again, as for the first difference, this second 

difference may account for some of the discontinuities seen between the author's and Janet 

Clegg's results, but should not affect future experiments as long as the process used is 

consistent.   

The final difference was surrounding the tournament sizes used. The author assumed that 

the tournament size used by Janet Clegg was four; although in hindsight there was no basis 

for this assumption. After discussions with Janet Clegg, it was decided that a different 

                                                     
17 Although this was never proven.  
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tournament size was likely to have been used; possibly twenty. Reinspection of the original 

paper [1] discovered that no tournament size was specified. 

All of these differences may count towards explaining the variation between the results 

shown in Figure 23, and those achieved by Janet Clegg. Despite these differences, Figure 23 

still shows that the use of crossover is very effective when compared to Cartesian Genetic 

Programming, implemented with a tournament selection scheme, using a floating point 

chromosome representation, but without BLX-0 crossover.   

Figure 24 however does not show the same promising results present in Figure 23 and also 

does not show the same results as reported by Janet Clegg. There is no indication that 

crossover is aiding the search process to any structured extent. These results are in 

complete contrast with those achieved by Janet Clegg, which showed higher crossover rates 

improving the search process. It is believed that these differences were not due to errors 

within the author's code, which appeared to be operating correctly in the previous example. 

It is therefore thought that the differences are due to the differences in how the Cartesian 

Genetic Programs were implemented; as described in the previous paragraphs.  

Figure 25 shows the results of the second experiment, which was to repeat the first 

symbolic regression problem using parameters found by the author to produce the best 

results for each of the crossover percentages. The best parameters found for each level of 

crossover are given in Table 3. These results show again, that for this symbolic regression 

problem, crossover is very beneficial to the search process and increasing the levels of the 

crossover increases its effectiveness.   

It can be seen by comparing Table 2 and Table 3, that the parameters found by the author 

to produce the best results are significantly different to those used by Janet Clegg. This may 

be an indication that the different implementations are influencing the search process or 

that the parameters used by Janet Clegg were not the most suitable. An interesting result 

shown in Table 3 is that different parameters were found to produce the best results for 

different levels of crossover percentage. This backs up the assumption that it is necessary to 

optimise the parameters for each individual experiment, as it cannot be guaranteed that the 

same parameters work effectively across a range of different investigations.    
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Figure 25 The author’s Code applied to the symbolic regression problem           using the author’s parameters 
given in Table 3 

Table 3 Best parameters found for the symbolic regression problem            

Crossover Mu Lambda Mutation 

0% 2 17 50% 

25% 2 18 30% 

50% 1 12 20% 

75% 1 7 30% 

 

The results of the investigation into whether the presence of a tournament selection 

scheme helps or hinders the normal18 Cartesian Genetic Programs search process is shown 

in Figure 26. The parameters used were also found using the methods described in 

Appendix B and are given in Table 4. It should be noted that “No Crossover” is similar to “0% 

Crossover”, except "0% crossover" uses tournament selection and "No crossover" does not.  

Figure 26 shows how the presence of tournament selection appears to offer a slight 

advantage over Cartesian Genetic Programming implemented without a selection scheme; 

at least for this specific example. Interestingly it appears that early in the search process the 

presence of the selection scheme does not offer any advantage and it is only later in the 

search where it has a positive effect. It was indicated by Julian Miller (via emails) that this 

result does not tie in with his past experiences.  

                                                     
18 Where "normal" refers to Cartesian Genetic Programming implemented without crossover.  
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Figure 26 The author’s Code applied to the symbolic regression problem           to investigate the effect of a 
tournament selection scheme on a Cartesian Genetic Program 

Table 4 The parameters used when evaluating the presence of a tournament selection scheme 

Tournament Selection Mu Lambda Mutation 

yes 2 17 50% 

no 2 14 40% 

 

The final proposed experiment was to investigate if the floating point chromosome 

representation, required for the BLX-0 crossover technique, affected the search process. 

Figure 27 quite clearly shows that the floating point representation has little to no effect on 

the search process. The parameters used for this experiment were the same as used when 

investigating the effect of no tournament selection given in Table 4.  
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Figure 27 The author’s Code applied to the symbolic regression problem          to investigate the effect of the 
floating point representation  

All of the experiments described in this chapter were then analysed to produce statistics 

which are often used to compare different Evolutionary Strategies. These statistics included, 

the average number of evaluations taken by each run to find the perfect solution; if a 

perfect solution was not found then the average was taken as if the best solution was found 

on the last evaluation. The average number of evaluations was used in place of the average 

number of generations as used by Janet Clegg, as the average number of evaluations 

enables comparisons with experiments which used different population sizes. Another 

statistic often used for the comparison of Evolutionary Strategies is Computational Effort; 

described in Appendix C. Lower Computational Effort values indicate a better search 

process. The statistics described in this paragraph are given in Table 5 for all the 

experiments investigated in this chapter.  
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Table 5 Average Evaluations and Computational Effort for all the experiments described in this chapter 

Experiment 

Description 

Symbolic 

Problem 

Average 

Evaluations 

Computational 

Effort 

0% Crossover - Janet Clegg’s Parameters           16,800 93,407 

25% crossover - Janet Clegg’s Parameters           6,800 45,008 

50% crossover - Janet Clegg’s Parameters           6,450 47,689 

75% crossover - Janet Clegg’s Parameters           7,000 45,008 

    

0% Crossover - Janet Clegg’s Parameters            31,650 278,150 

25% crossover - Janet Clegg’s Parameters            28,050 204,869 

50% crossover - Janet Clegg’s Parameters            30,700 224,156 

75% crossover - Janet Clegg’s Parameters            36,800 344,967 

    

0% Crossover – Author’s Parameters           9,984 60,329 

25% crossover - Author’s Parameters           6,037 46,406 

50% crossover - Author’s Parameters           5,358 46,406 

75% crossover - Author’s Parameters           4,036 39,637 

    

No Tournament without Crossover - integer           13,066 88,894 

No Tournament without Crossover - float           12,367 90,260 

Tournament without Crossover - float           9,984 60,329 

 

The average number of evaluations and computational effort should described the same 

information but from different viewpoints. A simple plot of the average number of 

evaluations against computational effort shows this linear relationship between the two 

statistics, see Figure 28. These values are all taken from this chapter.  
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Figure 28 Depiction that the two shown analytical methods used portray the same information 

As can be seen from Table 5, for the first symbolic regression problem (         ), all 

of the experiments show that increasing the level of crossover decreases the average 

number of generations needed to find a solution and the computational effort required. 

Unfortunately this trend was not seen in the second symbolic regression problem 

(          ), which does not show any trend of crossover aiding or hindering the search 

process. Table 5 also shows that using the integer form of the chromosomes has similar 

results to the floating point form. This indicates that representing the chromosomes in the 

floating point form has no effect on the overall search process and therefore does not 

contribute to the effectiveness of the crossover technique. Finally Table 5 also shows that 

tournament selection appears to aid the search process for the example shown in this 

chapter. It should be noted that all of the results obtained through observing the statistics 

shown in Table 5, can also be seen in the graphs also provided throughout this section.  

13.4 Conclusion 

The first conclusion to be made is that the trend described by Janet Clegg, BLX-0 offering a 

strong advantage when solving symbolic regression problems, has only been indentified for 

one of the two symbolic regression problems investigated. At first this was thought to be 

because of the differences in implementation, but after some thought and discussion, it was 

decided that this would change the raw values of the data e.g. the average fitness at each 

generation, but not the trends within the data. This was indeed true for the first symbolic 
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regression problem (         ) and therefore does not explain why the author's results 

were so different from Janet Clegg's for the second (          ).  

It has been shown for one of the symbolic regression problems, that the encoding of the 

chromosomes in a floating point form (as opposed to an integer form), has no noticeable 

effect on the search process. It can therefore be concluded that the floating point form does 

not influence the effectiveness of the crossover technique. The requirement of BLX-0 

crossover to use the floating point form therefore does not affect the search process. 

However, the extra level of decoding required to convert the floating point chromosome 

into an integer form, before the fitness can be calculated, will always have the penalty of 

incurring a larger time debt.  

It appears from the results described in this chapter, that the use of a tournament selection 

scheme is offering a slight advantage to the search process. This result however is in 

contrast with Julian Millers previous experience.  

13.5 Thoughts  

One oddity in these results is the unusually high mutation rates found to be most suitable 

for these experiments. A possible reason for this may be the small number of nodes used for 

each chromosome (ten function nodes and one output node). This requires that a minimum 

mutation rate of ~10% has to be used otherwise no mutation is carried out19. As it is 

possible that multiple mutations have to be carried out at once to progress from local 

minima, it follows that the minimum mutation rate may have to be ~20% (in order to 

change two parameters in the chromosome when implementing mutation). Also, to change 

the actual number of alterations to the genotype the mutation rate must be varied in ~10% 

increments i.e. 11% and 12% mutation are likely to cause the same number of actual 

mutations.    

One of the key issues which arose during these experiments was the realisation that the 

author’s implementation differed from that of Janet Clegg's; as described in the Results 

section. Most of these differences relate to the implementation of mutation, it is thought 

however, that as long as the method used is consistent during the experiments this should 

                                                     
19 Due to the author's usual way of interoperating mutation percentage.  
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not affect the analysis of the effectiveness of the crossover technique. The other difference 

in implementation related to the tournament size used, it is thought that this could have an 

effect on the analysis of the crossover technique. Future experiments therefore vary the 

tournament size to identify if this has an effect on the evolutionary process. These 

differences also count towards explaining the differences between the author’s and Janet 

Clegg's results for the average number of evaluations used and the computational effort 

required to find a solution. Again it is thought that these differences do not affect the 

analysis as long as the author is consistent with his own methods.  
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14 Test Case 1: Symbolic Regression  

Although two symbolic regression problems have already been investigated in the previous 

chapter, Repeating Janet Clegg's Experiments, it was decided that further investigation was 

needed to reach a fair conclusion over the effectiveness of BLX-0 crossover. This was due to 

one of the two symbolic regression problems showing results which indicated BLX-0 

crossover not providing an advantage and because only one tournament size was 

investigated; four.  

The first problem case, taken from John Koza's Book [13], is to re-discover the 

relationship                   . This is achieved by calculating the fitness as the 

difference between         and the evolved solution over a range of inputs, using the 

possible function nodes: addition, subtraction, multiplication, protected division and sin(x). 

This investigation is undertaken using only a tournament size of four and is studied to 

increase the number of symbolic regression problems investigated; thus leading to stronger 

conclusions.  

The second problem case is to repeat the symbolic regression problems investigated in the 

previous chapter, using tournament sizes of ten and twenty. This investigates if tournament 

size has any influence on the effectiveness of BLX-0 crossover. As previously mentioned, the 

paper published by Janet Clegg [1] does not indicate the tournament size used, but through 

discussions Janet Clegg has indicated that a tournament size of twenty was most likely.  

14.1 The Experiments  

The first experiment (for both of the described problem cases), is a comparison between 

normal Cartesian Genetic Programming implemented without crossover, with that which 

uses 0%, 25%, 50% and 75% crossover. This is to assess the relative effectiveness of BLX-0 

crossover, not only to various crossover percentages, but also to a normal Cartesian Genetic 

Program20. Using these experiments it is also possible to assess the effect of employing a 

tournament selection scheme on Cartesian Genetic Programming. As the only difference 

                                                     
20 That which used an integer chromosome form, implements no crossover, and employed no selection 
scheme.  
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between 0% crossover and normal Cartesian Genetic Programming is the presence of a 

tournament selection scheme; and the use of a floating point chromosome representation.   

The second experiment (again applied to both problem cases), is a comparison between 

normal Cartesian Genetic Programming using the integer and floating point chromosome 

representation. This analyses if the floating point representation is effecting the search 

process.  

All of these experiments are undertaken using evolutionary parameters which are found to 

be the most suitable; following the method described in Appendix B. As previously 

mentioned, this process of optimising parameters is long and tedious; it is however 

considered necessary if a fair comparison is to be made between the different methods. 

This is due to the complex nature of Evolutionary Computation, meaning small changes in 

the parameters can have a huge influence on the effectiveness of the search process.  

14.2 Design 

The basic design is exactly the same as used in the chapter Repeating Janet Clegg's 

Experiments. The fitness function again returns the sum of the absolute differences 

between the correct output, and the output of the evolved solution over a range of inputs. 

The range of inputs used for the                    problem case are twenty values 

evenly spaced between zero and 2π. A slight difference between this symbolic regression 

problem and those used previously, is that this particular problem case requires two inputs; 

the variable ‘x’ and the integer value one. The range of inputs for the remaining symbolic 

regression problems, as used by Janet Clegg, are again fifty values evenly spaced between 

pulse and minus one.  

The symbolic regression problem                   , and the first of the symbolic 

regression problems used by Janet Clegg (           ), were implemented using ten 

function nodes. The second symbolic regression problem used by Janet Clegg, (        

  ), initially also used ten nodes. However, after inspecting the results from using a 

tournament size of ten, it was indentified that            represented a much more 

complex search space. The remaining experiment, that using a tournament size of twenty, 

was therefore carried out using twenty nodes; to attempt to quicken the search process. 
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This was undertaken as redundancy in the chromosomes is thought to aid the search 

process, Julian Miller et al [18].  

14.3 Results 

As described, the first experiment was an evaluation of how effectively the relationship 

                    could be “re-discovered”; using only a tournament size of four. 

Figure 2921 appears to indicate that BLX-0 crossover is providing no advantage over normal 

Cartesian Genetic Programming (implemented without crossover or tournament selection). 

To clarify, the lower blue line shown beneath the red line (0% crossover), is the “Normal” 

plot, and the upper lighter blue line represents 50% crossover. The plot shows that 

“Normal” and “0% Crossover” are similar, indicating that the presence of tournament 

selection is having little effect on the search process; as the presence of tournament 

selection is the only meaningful difference between the two searches. The three remaining 

plots (25%, 50% and 75% crossover), are grouped together and located above the other two 

plots; indicating that the presence of crossover is hindering the search process.  

 

Figure 29 Various levels of crossover applied to the Cos(2x) Symbolic Regression Problem - tournament size four 

Table 6 shows the best parameters which were found for the                     

problem case; as previously described these were found using the method described in 

Appendix B. It can be seen in Table 6, that for all of the experiments undertaken for this 

particular problem case, a mu value of one was found to give the best results. There is 

                                                     
21 The reason some of the plots shown have two data labels is due to Microsoft excel limiting the number of 
data points allowed per plot to 64,000. Therefore some of the data had to be displayed using two plots; both 
coloured the same for ease of reading.    
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however a wide range of lambda and mutation values. As previously mentioned, the 

mutation method used by the author takes the mutation percentage as the percentage of 

genes which are changed, where a gene refers to one node; function or output. For 

example, if there were eight function nodes and two output nodes, a mutation percentage 

of 10% would cause one of the parameters of one of the nodes to be changed. This explains 

the high mutation rates seen throughout this project. An approximate conversion to a more 

conventional mutation rate (where the percentage refers to the percentage of parameters 

changed) is to third the figures quoted by the author. For example, a mutation rate of 30% 

quoted during this paper is equivalent to approximately 10% mutation using a more 

conventional mutation strategy. 

Table 6 Best Parameters found for the Cos(2x) Symbolic Regression Problem - tournament size four 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 1 7 35% 

Normal CGP - floating point representation 1 7 35% 

0% Crossover 1 5 35% 

25% Crossover 1 11 15% 

50% Crossover 1 8 20% 

75% Crossover 1 3 20% 

 

Table 7 shows the average evaluations and the computational effort required to find a 

solution to the                     problem case. It can be seen that for both average 

evaluations and computational effort, increasing the level of crossover increases the 

effectiveness of the search (when comparing different levels of crossover). It also shows 

that for both statistics, 75% crossover is more effective than normal Cartesian Genetic 

Programming; indicating that BLX-0 crossover is beneficial to the search process. This is in 

contrast to the results seen in Figure 29. 
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Table 7 Statistics used to analyse the Cos(2x) symbolic regression experiments - tournament size four 

Experiment Description Average Evaluations Computational 

Effort 

No Crossover - Integer representation 213,339 3,164,253 

No Crossover - Floating Point representation 212,603 3,580,072 

0% Crossover 220,211 3,690,339 

25% crossover 208,560 3,253,876 

50% crossover 202,990 3,189,442 

75% crossover 200,439 3,114,839 

 

Figure 30 shows a comparison between the integer and floating point chromosome 

representation22, when applied to the         symbolic regression problem. This is to 

assess whether the floating point representation is affecting the search process. Figure 30 

clearly shows that the floating point representation is not affecting the search process; in 

line with all previous results. Table 7 also shows this trend, as the averages evaluations 

required to find a solution is approximately the same for both representations. Oddly 

however, the Computational Effort statistic does not show this trend and is the first instance 

of any results not indicating that the floating point representation has no effect on the 

search process.  

                                                     
22 When using normal Cartesian Genetic Programming i.e. no crossover. 
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Figure 30 Comparison between the integer and floating point representation applied to the Cos(2x) symbolic regression 
problem when using Cartesian Generic Programming with no crossover or tournament selection  

Figure 31 gives the results of applying normal Cartesian Genetic Programming and that 

which uses 0%, 25%, 50% and 75% crossover to the              problem case when 

using a tournament size of ten. Figure 31 clearly shows that increasing the levels of 

crossover increases the effectiveness of the search process; as seen previously when using a 

tournament size of four. It also shows that all levels of crossover investigated outperformed 

normal Cartesian Genetic Programming. This result is not seen however for the          

   symbolic regression problem, Figure 32, which shows different levels of crossover being 

most effective at different stages of the search; this is indicated by the intercepting of the 

plots. This intercepting was also noted by Janet Clegg [1] and led to the implementation of 

variable crossover, where a high level of crossover percentage is used initially, which is then 

reduced as the search progresses. The results given in Figure 32, show that for this symbolic 

regression problem, higher levels of crossover percentages were most effective at the start 

of the search, and lower levels towards the end. Figure 32 also shows that after the 

maximum allowed evaluations, normal Cartesian Genetic Programming produces the worst 

results, followed by 0% crossover; which represents normal Cartesian Genetic Programming 

implemented with a tournament selection scheme and using the floating point chromosome 

representation. 50% crossover appears to produce the best results overall.  
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Figure 31 Various levels of crossover applied to the             Symbolic Regression Problem - tournament size ten 

 

Figure 32 Various levels of crossover applied to the            Symbolic Regression Problem - tournament size ten 

Table 8 and Table 9 give the average evaluations and the computational effort statistics for 

the             and the            symbolic regression problems respectively; 

when using a tournament size of ten. Table 8 and Table 9 both show that there is a level of 

crossover, for both symbolic regression problems, which out performs normal Cartesian 

Genetic Programming; indicated by both Average Evaluation and Computational Effort. They 

also show a trend of, increasing the level of crossover, increases the effectiveness of the 

search. It can also be seen from comparing the values in Table 8 and Table 9 that the 

symbolic regression problem            , is much more challenging than         

  ; this is a result also noted by John Koza [13] when he was studying the two symbolic 

regression problems. 
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Table 8 Statistics used to analyse the             symbolic regression experiments - tournament size ten 

Experiment Description Average Evaluations Computational 

Effort 

No Crossover - Integer representation 13,066 88,894 

No Crossover - Floating Point representation 12,367 90,260 

0% Crossover 9,606 65,036 

25% crossover 5,884 39,637 

50% crossover 4,661 43,459 

75% crossover 4,381 43,459 

 

Table 9 Statistics used to analyse the              symbolic regression experiments - tournament size ten 

Experiment Description Average Evaluations Computational 

Effort 

No Crossover - Integer representation 25,769 207,690 

No Crossover - Floating Point representation 24,710 203,750 

0% Crossover 24,600 184,977 

25% crossover 20,663 142,623 

50% crossover 18,177 132,540 

75% crossover 20,416 130,809 

 

The best parameters found for these two experiments are given in Table 10 and Table 11 for 

the respective symbolic regression problems. Once again very low mu values were found to 

produce the best results (values of one or two). When not using crossover the lambda 

values found to produce the best results for the two symbolic regression problems were 

quite different; fourteen for what is considered the easier problem and five for the other. 

When using crossover the lambda values appeared to decrease as the crossover percentage 

increased.  

An interesting point to note is that when population size (mu + lambda) is the same as the 

tournament size, the children are only produced from the elite members of the population. 

This has the implication that as population size approaches the tournament size, the effect 

of the tournament selection scheme is reduced. This is interesting because for all of the 
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symbolic regression problems discussed so far in this chapter, the effect of the tournament 

selection scheme is reduced or completely removed for the higher orders of crossover. As 

the population size found to be most suitable reduced with crossover percentage.    

The mutation rates given in Table 10 and Table 11 were fairly consistent for the two 

symbolic regression problems (40%, 50%), except when using 75% crossover on the harder 

problem, where a mutation percentage of 80% was found to produce the best results. 

Table 10 Best Parameters found for the             Symbolic Regression Problem - tournament size ten 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 2 14 40% 

Normal CGP - floating point representation 2 14 40% 

0% Crossover 2 22 50% 

25% Crossover 1 22 40% 

50% Crossover 1 18 40% 

75% Crossover 1 11 50% 

 

Table 11 Best Parameters found for the             Symbolic Regression Problem - tournament size ten 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 1 5 40% 

Normal CGP - floating point representation 1 5 40% 

0% Crossover 2 21 50% 

25% Crossover 1 11 50% 

50% Crossover 1 10 50% 

75% Crossover 1 10 80% 

 

Figure 33 shows that crossover is offering an advantage to the search process for the 

symbolic regression problem             when using a tournament size of twenty. 

Figure 34 also indicates this result for the second symbolic regression problem         

  , which shows the final average fitness values in order of crossover percentage, with the 

higher percentages producing the best result. In both of the figures, "Normal" Cartesian 

Genetic Programming, with no crossover, produces the worst results when compared to 

those which employed crossover. Once again Figure 34 shows, that for the            

symbolic regression problem, the plots intercept each other at various points. It is therefore 
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speculated again that this is an indication that variable crossover might produce even more 

promising results.    

It should be noted that for the symbolic regression problem           , shown in Figure 

34, the number of function nodes was increased to thirty; this was to accommodate the 

discovery that this was a much more complex search space. 

 

Figure 33 Various levels of crossover applied to the             Symbolic Regression Problem - tournament size 
twenty 

 

Figure 34 Various levels of crossover applied to the            Symbolic Regression Problem - tournament size 
twenty 

The same results shown in Figure 33 and Figure 34 are also present in Table 12 and Table 

13; increasing the levels of crossover offers an increase to the effectiveness of the search 

process. In both cases the presence of crossover out performs "normal" Cartesian Genetic 

Programming implemented without crossover; when using a tournament size of twenty. The 
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results in these tables back up the assumption that the second symbolic regression problem 

             is much more challenging than the first              .  

Table 12 Statistics used to analyse the             symbolic regression experiments - tournament size twenty 

Experiment Description Average Evaluations Computational 

Effort 

No Crossover - Integer representation 13,066 88,894 

No Crossover - Floating Point representation 12,367 90,260 

0% Crossover 8,620 58,097 

25% crossover 5,938 50,000 

50% crossover 4,186 33,333 

75% crossover 3,783 33,333 

 

Table 13 Statistics used to analyse the               symbolic regression experiments - tournament size twenty 

Experiment Description Average Evaluations Computational 

Effort 

No Crossover - Integer representation 25,769 207,690 

No Crossover - Floating Point representation 24,710 203,750 

0% Crossover 19,121 142,180 

25% crossover 16,422 118,390 

50% crossover 13,360 112,434 

75% crossover 11,846 100,434 

 

Table 14 and Table 15 show the best parameters found for the two symbolic regression 

problems under investigation; when using a tournament size of twenty. As for when the 

tournament size was ten, the mu values which produce the best results were very low (one 

or two). This appears to be a trend, as both the author and Janet Clegg have found low 

values of mu to work well for these types of problems. Again, as for when the tournament 

size was ten, when not implementing crossover higher lambda values were found to work 

better for the easier problem, than for the harder. The population sizes were above the 

tournament size in most cases, except for the harder symbolic regression problem 

(          ) when implementing higher crossover percentages. The mutation 
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percentages found to produce the best results were broadly spread across the range of 40% 

to 70%.  

Table 14 Best Parameters found for the             Symbolic Regression Problem - tournament size twenty 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 2 14 40% 

Normal CGP - floating point representation 2 14 40% 

0% Crossover 2 28 70% 

25% Crossover 1 28 50% 

50% Crossover 1 33 50% 

75% Crossover 1 30 60% 

 

Table 15 Best Parameters found for the             Symbolic Regression Problem - tournament size twenty 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 1 5 40% 

Normal CGP - floating point representation 1 5 40% 

0% Crossover 1 26 50% 

25% Crossover 1 33 60% 

50% Crossover 1 20 40% 

75% Crossover 1 20 40% 

 

Table 12 and Table 13 also show that the use of the floating point representation is 

producing no significant deviations from the results obtained using the integer form; 

indicating that it is not affecting the search process. This result is also present in Figure 35 

and Figure 36. One oddity is that Figure 36 shows the floating point chromosome 

representation outperforming the integer representation between 5000 and 30000 

evaluations. The author assumes this deviation is due to the random nature of Evolutionary 

Strategies; although it was thought that averaging over 1000 runs would eliminate this.      
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Figure 35 Comparison between the integer and floating point representation applied to the             symbolic 
regression problem when using Cartesian Generic Programming with no crossover or tournament selection 

 

 

Figure 36 Comparison between the integer and floating point representation applied to the             symbolic 
regression problem when using Cartesian Generic Programming with no crossover or tournament selection  

To aid comparison, some of the results obtained in this and the previous chapter are given 

in Table 16, which shows the computational effort required by the symbolic regression 

problems used by Janet Clegg for all of the experiments where the parameters have been 

optimised. This table shows promising results for the application of crossover to symbolic 

regression type problems; as in almost every case the effectiveness of the search increases 

with crossover percentage. The effectiveness of the search is also increasing with 

tournament size; although it is highly unlikely that this result would carry on indefinitely.  
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Table 16 All of the Computational Effort results for all of the experiments undertaken on the two Symbolic Regression 
problems taken from Janet Clegg's Paper 

Experiment Description                        

Tournament Size 4 10 20 10 20 

No Crossover - Integer representation 888,894 88,894 88,894 207,690 207,690 

0% Crossover 60,329 65,036 58,097 184,977 142,180 

25% crossover 46,406 39,637 50,000 142,623 118,390 

50% crossover 46,406 43,459 3,333 132,540 112,434 

75% crossover 39,637 43,459 3,333 130,809 100,434 

 

The method by which Janet Clegg implemented BLX-0 crossover uses a tournament 

selection scheme to select the parents from the population. Whether this selection scheme 

is beneficial to the search process can be evaluated by comparing the results of "No 

Crossover - Integer representation" to those generated by "0% crossover". This is due to the 

fact that 0% crossover carries out no crossover (hence 0%) but does implement tournament 

selection; instead of only elitism. Therefore the only two differences between "Normal" 

Cartesian Genetic Programming and "0% crossover", is that the latter uses a floating point 

representation and tournament selection. It has been shown that the floating point 

representation poses no significant effect to the search process and therefore the effect of 

tournament selection can be seen in isolation. Based on these assumptions, Table 16 shows 

that the tournament selection scheme offers an advantage for the two symbolic regression 

problems used by Janet Clegg. The same result is not however found for the cos(2x) 

symbolic regression problem, Table 7, where the computational effort of "0% crossover" 

(tournament selection) is much higher than "normal" (no tournament selection).  

14.4 Conclusion  

It appears from the results provided in this, and the previous chapter, that Cartesian Genetic 

Programming implemented with BLX-0 crossover (as used by Janet Clegg in her paper [1]) is 

more effective at finding solutions to symbolic regression type problems than Cartesian 

Genetic Programs implemented without. In all cases this has been shown both graphically 

and via commonly quoted statistics (average evaluations and computational effort).  

It has been decided that there is not enough evidence to conclude how the presence of a 

tournament selection scheme is affecting the search process e.g. offers and 
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advantage/disadvantage or does not affect the search process. Of the three symbolic 

regression problems investigated, two indicated that it offered an advantage, and the third 

(cos(2x)) showed a disadvantage.  

It has been concluded that the floating point representation required by BLX-0 crossover 

does not alter the search process to any significant extent; this was shown in all cases 

except for the cos(2x) problem case, where the computational effort was higher for the 

floating point representation, Table 7. It was however also shown in Table 7 that the floating 

point representation did not significantly change the average evaluations, only the 

computational effort, which is an unexpected result23. 

Throughout this chapter low mu values were always found to produce the best results; 

values of one or two. There were however a wide range of lambda values between three 

and thirty three; with normal Cartesian Genetic Programming usually preferring lower 

lambda values. This may indicate that the crossover operator prefers larger population sizes, 

possibly to ensure more diverse populations; a situation in which crossover has the largest 

influence.     

The mutation percentages also covered a wide range between 15% and 80%, although it 

appeared that different symbolic regression problems preferred different levels of mutation 

percentage.    

14.5 Further Work 

If more time were available, the optimal parameters would have been found for the 

           symbolic regression problem using a tournament size of four; the obvious 

absence from Table 16. Again if more time were available, further symbolic regression 

problems would have been studied over a wider range of tournament sizes; to find the point 

where increasing the tournament size is no longer beneficial to the search process.  

Another interesting investigation could be to evaluate how effective BLX-0 crossover is 

when implemented without a selection scheme. This would be possible by always selecting 

the parents to be the two elite members of the population and generating all the children 

from these; using BLX-0 crossover and mutation. Although this would cause the mu 

                                                     
23 This experiment was repeated at a later date to confirm this strange result. 
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parameter to be fixed at two24, it is not thought that this would be an issue, as the majority 

of the time two was found to be the best value (or one, which is close).  

Another investigation which would have been undertaken if time had permitted was to 

implement the variable crossover as used by Janet Clegg [1]. There has been evidence that 

this may have offered an advantage, Figure 32 and Figure 34, which both showed the plots 

intersecting each other at various stages. It was however decided that it would be more 

beneficial to investigate different test cases than try every variation on the crossover 

technique.  

14.6 Thoughts  

It is thought by the author, that the type of crossover (BLX-0) being employed might be 

acting as a restricted type of mutation. This is thought for two reasons, the first is that when 

Janet Clegg implemented variable crossover, it was implemented so that the crossover level 

reduced as the search progressed, this is a technique often employed when implementing 

variable mutation rates. Secondly, BLX-0 crossover selects a restricted random value for 

each gene limited by the parent’s genes. This causes massive alterations25 at the start of the 

search (when the population is very diverse) and much less when converging on a solution; 

again very much like variable mutation. This second point also causes slightly higher 

alterations to take place after regular mutation makes a large beneficial change, which is 

carried through to the next population. When this occurs the population becomes slightly 

more diverse, this allows crossover to make larger changes to the chromosomes initially 

after a jump in the search space, but causing less changes again during convergence.  

 

                                                     
24 Or three, and conducting crossover using all three parents etc.  
25 Where alterations can be thought of as mutations under a different name. 
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15 Test Case 2: Synthesis of Boolean 

Logic 

Synthesis of Boolean logic was chosen for the next problem case because, like symbolic 

regression, it showcases the ability for Cartesian Genetic Programming to create programs; 

rather than simply optimise a number of parameters like most other Evolutionary 

Strategies. A secondary reason for selecting this problem case, is that Cartesian Genetic 

Programming was originally developed for the synthesis of Boolean logic and so holds some 

historic value. This problem case is discussed in further detail in the Possible Test Cases 

chapter.  

15.1 The Experiments  

Two circuits were selected to test the effectiveness of BLX-0 crossover on this test case, as it 

was felt a single example would not be sufficient to draw strong conclusions; due to time 

restraints more could not be undertaken. The two chosen circuits selected for this test case 

were the full adder and the four bit even parity generator. A truth table showing the 

operation of a full adder is given in Table 17 and the conventional logic configuration is 

given in Figure 37, taken from [58]. As can be seen, this circuit comprises of three inputs and 

two outputs; this is the first instance of a multiple output problem case. The truth table 

showing the operation of the four bit even parity generator is also provided in Table 18. 

Table 17 Truth Table of Full Adder 
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Figure 37 Conventional Full Adder circuit configuration  

 

Table 18 Truth Table for Four Bit Even Parity Generator  

 

When evolving circuit configurations for the full adder, the following logic gates were made 

available: AND, OR, NAND, NOR and XOR. When evolving circuit configurations for the four 

bit even parity generator, the following logic gates were be made available: AND, OR, NAND 

and NOR. The absence of the XOR gate for the four bit even parity generator case produces 

a much more challenging search space, as described in Julian Millers book [15].   

For both circuits, experiments are undertaken for tournament sizes four and twenty, this 

investigates the effect of tournament size on the search process26. For all experiments 

                                                     
26 Unfortunately time does not permit a more rigorous sweep of tournament sizes. 
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undertaken in this chapter, the number of function nodes is set to thirty. It is understood 

that these circuits can be implemented with far fewer logic gates, however it has been 

shown that redundancy in the function nodes can aid the search process [18].  

For both circuits, using both tournament sizes, experiments were carried out without 

crossover (normal), and with 0%, 25%, 50% and 75% crossover. This investigated the effect 

of BLX-0 crossover on the search process. Using these experiments it was also possible to 

analyse the effect of employing a tournament selection scheme on Cartesian Genetic 

Programming; by comparing the “normal” and the "0% Crossover"27 results, as previously 

mentioned. For both of these circuits, experiments were also undertaken without BLX-0 

crossover, and without tournament selection, but using the floating point representation of 

the chromosomes. This investigated the effect of the floating point form on the search 

process. As previously discussed, by isolating the effect of the floating point form and the 

effect of the tournament selection scheme, the effectiveness of BLX-0 crossover can be 

fairly analysed.  

As for all the previous problem cases, the experiments were undertaken using what were 

found to be suitable evolutionary parameters. This process involved finding suitable mu, 

lambda and mutation percentage values. As mentioned in previous chapters, the process of 

finding suitable values is very time consuming but is necessary if fair comparisons are to be 

made between the techniques.   

As with the previous problem cases, all the experiments were averaged over 1000 runs with 

the results provided graphically and via commonly quoted statistics: average evaluations 

and computational effort.  

15.2 Design 

The design and integration of the fitness classes was relatively simple, due to the modular 

approach which had been followed when designing and implementing the code. The fitness 

assigned to each chromosome is the number of incorrect outputs generated by the evolved 

circuit, when all possible inputs were swept. The inputs for each line of the truth table are 

used as the inputs to the current chromosome under evaluation. The outputs are taken as 

                                                     
27 0% Crossover actually implements no crossover but use the floating point representation for chromosomes 
and employs a tournament selection scheme to select the members of the next generation.      
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the outputs of the current chromosome; and then compared to the corresponding outputs 

of the truth table. For the case where there are multiple outputs (full adder), a fitness value 

is assigned for each output i.e. one row of the full adder truth table can increment the 

fitness by two; in the case where both of the outputs are incorrect.    

The design of the Boolean logic function set, used by this problem case, was also very simple 

due to the modular structure of the code and because JAVA contains many built in bit wise 

operands.       

The testing followed a similar strategy to that used by the symbolic regression problem 

case. The chromosomes generated by the Cartesian Genetic Program had their fitnesses 

calculated manually to ensure the assigned fitnesses were as expected. The manual 

calculation of the fitnesses was achieved using an excel spreadsheet, which natively contain 

the Boolean logic expressions; AND, OR and NOT. The logic expressions NAND and NOR 

were generated using a combination of these gates. The final expression, XOR, was 

implemented via a excel macro written in the Visual Basic programming language, see 

Figure 38. Using these logic gates, the circuits generated by the Cartesian Genetic Program 

could be implemented within excel and there fitnesses calculated.  

 

Figure 38 Visual Basic Macro to implement XOR logic gate in Microsoft's Excel  
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15.3 Results 

The first experiment was the application of normal Cartesian Genetic Programming and 

Cartesian Genetic Programming implemented with 0%, 25%, 50% and 75% crossover, to the 

full adder problem case using a tournament size of four. Figure 39 shows that BLX-0 

crossover is offering no advantage to the search process, with the Cartesian Genetic 

Program implemented without crossover outperforming all strengths of crossover. It also 

shows that tournament selection is degrading the search process, indicated by 0% crossover 

performing worse than “Normal” Cartesian Genetic Programming28.   

 

Figure 39 Various levels of crossover applied to the evolution of a Full Adder using optimised parameters with a 
tournament size of four   

The second results shown in Figure 40 are for the same experiment previously described; 

now with the tournament size set to twenty. Figure 40 shows the same result present in the 

previous experiment, this time however the plots are slightly more spread out and it is clear 

that the search process is becoming worse as the crossover percentage is increased. This 

indicates that increasing the tournament size is not beneficial to the crossover technique for 

the full adder example.  

                                                     
28 As mentioned previously, the only difference between “Normal” and “0% crossover”, is the presence of 
tournament selection and the use of the floating point representation.   
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Figure 40 Various levels of crossover applied to the evolution of a Full Adder using optimised parameters with a 
tournament size of twenty   

Table 19 shows the average evaluations and computational effort statistics for the full adder 

experiments implemented with a tournament size of four. The first thing to note is that for 

some of the experiments no computational effort figure is given. This is because for all of 

the 1000 runs used to generate the statistics, no single run failed to find a solution and so 

the computational effort equation was not valid. Experiments with fewer evaluations 

(generations) could have been conducted to increase the likelihood of not finding a solution 

on every run; but this was not considered necessary as the graphical figures and the average 

evaluations were considered sufficient to analyse the results. The average evaluations 

confirm that the presence of BLX-0 crossover is not beneficial to the search process in this 

case; as seen in Figure 39. The average evaluations also show that there is little difference 

between using the integer/floating point form for the chromosomes; indicating that this is 

not influencing the search process.  

Table 19 Statistics used to analyse the Full Adder Problem - tournament size four 

Experiment Description Average Evaluations Computational Effort 

Normal CGP - integer representation 2,953 - 

Normal CGP - floating point representation 2,994 - 

0% Crossover 3,674 33,333 

25% Crossover 4,137 - 

50% Crossover 3,808 - 

75% Crossover 4,111 33,333 
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Table 20 shows the statistics for the same experiment, this time using a tournament size of 

twenty. The same result as seen in the previous table is present; normal Cartesian Genetic 

Programming out performing that which uses BLX-0 crossover. The average evaluations 

statistic seen in Table 20, also shows the trend seen in Figure 40; increasing the crossover 

percentage decreases the effectiveness of the search process. 

Table 20 Statistics used to analyse the Full Adder Problem - tournament size twenty 

Experiment Description Average Evaluations Computational Effort 

Normal CGP - integer representation 2,953 - 

Normal CGP - floating point representation 2,994 - 

0% Crossover 5,414 41,702 

25% Crossover 4,944 37,051 

50% Crossover 5,613 39,637 

75% Crossover 6,310 43,459 

 

Table 21 shows the parameters which were found to be the most suitable for the full adder 

problem case experiments; when using a tournament size of four. For all cases, the best mu 

value was found to be one. Low lambda values were also found to produce the best results, 

all in the range of three to five. In many cases, where crossover was been employed, the 

best population size (mu + lambda) was found to be the same as the tournament size. This 

has the effect of functioning as if there were no tournament selection scheme been 

employed (the two parents used to generate the children are always the best two 

chromosomes in the population). This could indicate that tournament selection is not 

benefiting the search process. The mutation percentages were all in the range of 14% - 20% 

and it appears that mutation percentage is inversely proportional to crossover percentage in 

this case.  
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Table 21 Best Parameters found for the Full Adder problem - tournament size four 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 1 4 20% 

Normal CGP - floating point representation 1 4 20% 

0% Crossover 1 3 20% 

25% Crossover 1 5 17% 

50% Crossover 1 3 14% 

75% Crossover 1 3 14% 

 

Table 22 shows the best parameters found for the same experiment when using a 

tournament size of twenty. As when the tournament size was four, mu parameters of one 

were found to produce the best results. Very low lambda values were also again found to 

produce good results, indicating that the presence of a tournament selection scheme may 

be hindering the search process. The range of mutation percentages was this time between 

14% - 26% and the pattern of mutation percentage being inversely proportional to crossover 

percentage was not present in these parameters.  

Interestingly, when Julian Miller synthesises Boolean logic circuits using "normal" Cartesian 

Genetic Programming, he often uses the parameters mu=1 and lambda=429, which were 

found to be the most suitable during the extensive parameter optimisation process.      

Table 22 Parameters found for the Full Adder problem - tournament size twenty 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 1 4 20% 

Normal CGP - floating point representation 1 4 20% 

0% Crossover 1 22 14% 

25% Crossover 1 19 23% 

50% Crossover 1 21 23% 

75% Crossover 1 22 26% 

 

                                                     
29 As explained during a four year taught lecture course “Biologically Inspired Computation”, University of York, 
2011. 
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Finally for the full adder experiments, Figure 41 confirms the result seen in Table 19 (and 

Table 20), that the floating point chromosome representation is not affecting the search 

process.  

 

Figure 41 Normal Cartesian Genetic Programming applied to evolving Full Adder using conventional integer chromosome 
representation and floating point representation 

Figure 42 shows the results of the first experiment into the evolution of a four bit even 

parity generator; using a tournament size of four. The first thing to note is the “Evaluations” 

scale is now much larger than before; this is because this experiment is significantly harder 

to solve than the full adder example. As a result, the parameter optimisation process and 

conducting the final experiments took significantly longer to complete than for the full 

adder30. 

As with the full adder example, Figure 42 shows that “Normal” Cartesian Genetic 

Programming is out performing that which uses BLX-0 crossover across all crossover 

percentages. Figure 42 also shows that “Normal” Cartesian Genetic Programming is out 

performing “0% Crossover”, indicating that the presence of the tournament selection 

scheme is not beneficial to the search process. The plots 0%, 25%, 50% and 75% crossover 

are all very close, so no real conclusions can be drawn about their relative effectiveness; it 

does appear however that 75% crossover is the least effective at this search.  

                                                     
30 The full adder circuit took approximately 20 minutes to conduct 1000 runs, whereas the four bit even parity 
circuit took approximately six hours. 
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Figure 42 Various levels of crossover applied to the evolution of a four bit even parity generator using optimised 
parameters with a tournament size of four   

When the tournament size is increased to twenty, the same results as seen in Figure 42 are 

even more apparent in Figure 43; showing that for this example BLX-0 crossover is operating 

more effectively with a lower tournament size. For this example however it appears that 

75% crossover is outperforming the other strengths of crossover.  

 

Figure 43 Various levels of crossover applied to the evolution of a four bit even parity generator using optimised 
parameters with a tournament size of twenty   

The statistics used to analyse the effectiveness of the different search techniques for the 

four bit even parity generator, using a tournament size of four, are given in Table 23. Both 

the average evaluations and the computational efforts produced for this experiment show 

that “Normal” Cartesian Genetic Programming outperformed all levels of BLX-0 crossover. It 
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can also be seen that there appears to be no correlation between crossover percentage and 

the effectiveness of the search for this example.     

Table 23 Statistics used to analyse the four bit parity generator Problem - tournament size four 

Experiment Description Average Evaluations Computational Effort 

Normal CGP - integer representation 71,297 315,452 

Normal CGP - floating point representation 77,049 357,669 

0% Crossover 105,920 486,916 

25% Crossover 93,168 428,269 

50% Crossover 93,331 435,259 

75% Crossover 102,284 462,568 

 

Table 24 show the same statistics for the four bit even parity generator using a tournament 

size of twenty. Once again the same result of “Normal” Cartesian Genetic Programming 

outperforming all levels of BLX-0 crossover is present. There also again appears to be no 

correlation between crossover percentages and the effectiveness of the search.  

Just out of interest, it can be seen how much harder the four bit even parity problem is to 

solve than the full adder, by comparing the average number of evaluations needed by 

“Normal” Cartesian Genetic Programming in Table 19 and Table 23. It took approximately 25 

times more evaluations to implement the four bit even parity generator than for the full 

adder. It is likely the difference in complexity is due to the presence of XOR logic gate in the 

full adder case (which was not available to the four bit even parity generator).  

Table 24 6 Statistics used to analyse the four bit parity generator Problem - tournament size twenty 

Experiment Description Average Evaluations Computational Effort 

Normal CGP - integer representation 71,297 315,452 

Normal CGP - floating point representation 77,049 357,669 

0% Crossover 158,046 937,853 

25% Crossover 151,747 879,297 

50% Crossover 162,094 991,167 

75% Crossover 146,178 820,931 
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The parameters found to be the most suitable for the four bit even parity generator, when 

using a tournament size of four, are given in Table 25. As for the full adder example, the 

best parameters found for “Normal” Cartesian Genetic Programming, were when  mu=1 and 

lambda=4; the parameters found by Julian Miller to be the most suitable when evolving 

Boolean circuits. Again as for the full adder example, when using BLX-0 crossover the 

population size was always found to approach the tournament size. As previously 

mentioned this has the effect of making the tournament selection process redundant; 

always producing the children from the two fittest members of the population. The 

mutation percentages were in the range 8% - 17% and appeared to be inversely 

proportional to crossover percentage.  

Table 25 Best Parameters found for the four bit parity generator Problem - tournament size four 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 1 4 14% 

Normal CGP - floating point representation 1 4 14% 

0% Crossover 1 3 17% 

25% Crossover 1 3 11% 

50% Crossover 1 3 11% 

75% Crossover 1 3 8% 

 

Table 26 gives the parameters which were found to be most suitable for the four bit even 

parity generator when using a tournament size of twenty. Once again the population sizes 

were always very close to the tournament size (when crossover was been employed), 

indicating that the tournament selection process was not beneficial to the search. The range 

of mutation percentages was 14% - 23% and showed little correlation with crossover 

percentage.  
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Table 26 Best Parameters found for the four bit parity generator Problem - tournament size twenty 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 1 4 14% 

Normal CGP - floating point representation 1 4 14% 

0% Crossover 1 20 20% 

25% Crossover  1 19 17% 

50% Crossover 1 22 23% 

75% Crossover 1 19 23% 

 

Once again Figure 44 shows that the use of the floating point chromosome representation 

has no effect on the search process for the evolution of a four bit even parity circuit. The 

values in Table 23 (and Table 24) also indicate this result, although there is a slightly larger 

difference between the average evaluations and computational effort than seen in previous 

examples.  

 

Figure 44 Normal Cartesian Genetic Programming applied to evolving a four bit parity generator using conventional 
integer chromosome representation and floating point representation  

15.4 Conclusion 

The main conclusion to be drawn is that BLX-0 crossover appears to be significantly 

degrading the effectiveness of the Cartesian Genetic Program when applied to the synthesis 

of Boolean logic. This result was shown by all three analytical methods (graphically, average 

evaluation and computational effort) for both of the test circuits investigated within this 

chapter. There was no notable correlation of the relative levels of crossover percentage 

offering an advantage or disadvantage for either of the two test circuits used in this chapter.  
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It appears that the implementation of a tournament selection scheme significantly reduces 

the effectiveness of the Cartesian Genetic Program. This has been shown by comparing the 

“Normal” Cartesian Genetic Programming results with those obtained using 0% crossover. 

The fact that many of the experiments found population sizes similar to the tournament size 

to be most effective, also indicates that the presence of the tournament selection scheme 

may be detrimental.   

The affect of using different tournament sizes when implementing BLX-0 crossover can also 

be assessed from the results obtained in this chapter. The results show that for both 

circuits, using a tournament size of four resulted in a better search process than using a 

tournament size of twenty. This result was shown in the graphical plots of average fitness at 

each generation against evaluation, the average evaluations and in the computational effort 

required by each search. This result indicates that BLX-0 crossover would not perform better 

if larger tournament sizes were used.  

All of the experiments described in this chapter found mu values of one to be most suitable 

in all cases. Additionally both experiments found lambda values of four to be the most 

suitable when not implementing crossover; in line with results obtained by Julian Miller31. 

This strongly indicates that a (1+4)-ES may be most suitable for the evolution of Boolean 

logic expressions when using Cartesian Genetic Programming (without crossover).  

The effect of the floating point chromosome representation, required by BLX-0 crossover, 

has once again been shown not to affect the search process. The highest indication that this 

was not the case can be seen for the four bit even parity generator, Table 23 (or Table 24), 

which showed an 11.8% increase in computational effort required when using the floating 

point representation. However this increase was not seen in any of the graphical plots 

analysing the effect of the floating point form (Figure 41 and Figure 44) or in the average 

evaluations32 recorded the full adder example (Table 19 and Table 20); which showed a 

difference of 1.4%.   

 

                                                     
31 Information obtained during a four year lecture course “Biologically inspired Computation” taught by Julian 
Miller, 2011, University of York.  
32 Computational effort was not available.  
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16 Test Case 3: Function Optimisation  

Function optimisation was chosen as the next test case for the main reason given in the 

Possible Test Cases chapter; nearly all problems can be reduced to the process of optimising 

parameters. The results of this test case are therefore highly important because if crossover 

can be shown to offer an advantage to generic function optimisation problems, it would 

make it beneficial to many real world applications of Cartesian Genetic Programming. For 

details of the specific functions to be optimised throughout this test case see the Possible 

Test Cases chapter. 

16.1 The Experiments  

All three multi-dimensional graphs described in the Possible Test Cases chapter (The Shekel 

Function, The Griewank Function and the Rosenbrock Function) were investigated so strong 

conclusions could be drawn over the effectiveness of BLX-0 crossover. An overview of the 

three functions is provided in Table 27 for reference. These graphs contain a range of 

different complexities/design spaces, including: many variables (Griewank), many local 

minima (Griewank & Shekel) and very flat landscapes (Rosenbrock). 

Table 27 Overview of the three Graphical Functions used in this chapter 

Function Name Variables Variable Range Minimum Optimal Co-coordinates 

Shekel  4 0 ≤ Xi ≤ 10 -10.5364098167 4.00075, 4.00059, 3.99966, 3.99951 

Griewank  10 -600 ≤ Xi ≤ 600 0 0,0,0,0,0,0,0,0,0,0 

Rosenbrock  2 -2 ≤ Xi ≤ 2 0 1,1 

 

Each graph is investigated using: Normal Cartesian Genetic Programming with and without 

the floating point chromosome representation and using the BLX-0 crossover at strengths of 

0%, 25%, 50% and 75%. The crossover experiments were undertaken using tournament 

sizes of four and twenty. These experiments evaluate the effectiveness of the BLX-0 

crossover in comparison to normal Cartesian Genetic Programming implemented without 

crossover. They also investigate the effect of varying the tournament size and crossover 

percentage when using BLX-0 crossover. Finally the floating point chromosome 

representation, required by the BLX-0 crossover, is also evaluated.  
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In all cases the parameters used for each experiment were found using the method 

described in Appendix B. As previously discussed, the process of finding suitable parameters 

requires substantial time investigating different evolutionary parameter values. The process 

is considered necessary as selecting semi-random values for the parameters would not be a 

fair comparison of the different search techniques; which may require different parameters 

to operate effectively.  

Before the experiments were undertaken, the author felt concerned that the Cartesian 

Genetic Program would be able to prematurely solve the Griewank function due to its 

minimum been located at 0,0,0,0,0,0,0,0,0,0. This was because one of the inputs made 

available to the Cartesian Genetic Program was zero; and could simply be mapped to all of 

the outputs to solve the Griewank problem. As a result the Griewank function was slightly 

altered so the minimum was shifted to the arbitrary position of 0.27583, 0.27583, 0.27583, 

0.27583, 0.27583, 0.27583, 0.27583, 0.27583, 0.27583, and 0.27583. The Shekel Function 

was also raised, so as the minimum produced a fitness of zero instead of -10.536409816733.  

All of the experiments used throughout this chapter were averaged over 1000 runs to 

provided statistically reliable data. The results are presented in the usual formats: a 

graphical plot of fitness against evaluation, average evaluations and computational effort.  

16.2 Design 

To make the Cartesian Genetic Program generate co-ordinates for the given functions, the 

number of inputs was set to five and fixed arbitrarily as: 0, 0.1, 0.2, 0.3, and 0.4. The co-

ordinates for the function under consideration were then the corresponding chromosome 

outputs to these inputs. To accommodate the different ranges of each functions parameter, 

the Cartesian Genetic Programs function nodes were chosen to only produce values 

between minus and positive one. This ensured that the outputs generated by each 

chromosome were also between minus and positive one and could then be scaled (and if 

necessary shifted) to a suitable range for each function.  

                                                     
33 This was undertaken so the graphs of average fitness against evaluation would be consistent with all the 
other graphs produced during this project; with zero representing a perfect solution.  
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The functions provided for the function nodes were as follows34: absolute(input 1), square 

root of the absolute(input 1), sin(input 1), cos(input 1), tanh(input 1), sin(input 1 + input 2), 

cos(input 1 + input 2), tanh(input 1 + input 2), hypotenuse(input 1 , input 2)/√2, (input 1 + 

input 2)/2, (input 1 - input 2)/2, input 1 * input 2, bounded division (where the largest input 

value is always the denominator). 

The fitness assigned to each chromosome is the value returned by the function under 

inspection; at the co-ordinates produced by the scaled outputs of each chromosome. For all 

the functions investigated, lower fitness values represented a fitter chromosome; with zero 

always representing a perfect solution. A solution was considered suitable, and hence the 

search terminated, when the assigned fitness was < 0.001.  

To ensure correct fitnesses were being assigned to each chromosome, an excel spread sheet 

was constructed which decoded a given chromosome and produced its outputs; for the 

given fixed inputs. These outputs were then scaled and/or shifted appropriately and input 

into the corresponding function. The output of this function was then used to ensure the 

fitness assigned to the chromosome under inspection was correct; confirming the correct 

operation of the fitness function within the code.    

16.3 Results 

The first set of results surround the Rosenbrock Function, implemented with a tournament 

size of four and twenty (when BLX-0 crossover is being employed). Figure 45 shows the 

fitness at each evaluation, averaged over 1000 experiments, for normal Cartesian Genetic 

Programming and that implemented with 0%, 25%, 50% and 75% crossover; using a 

tournament size of four. The results shown in Figure 45 differ to those seen previously in 

this project as it shows a wide range of fitnesses in the initial population. This is an 

interesting result as the randomly generated initial populations should produce random 

fitness values, which when averaged over the 1000 runs should be the same regardless of 

the presence or strength of crossover. The likely explanation for this range of initial fitnesses 

is that larger random populations are more likely to contain a fitter chromosome than those 

of a smaller size. This appears to be the case in Figure 45, as the order of initial fitnesses are 

                                                     
34 These functions were taken from code provided by Julian Miller for a fourth year lecture course "Biologically 
Inspired Computation", Electronic Engineering, University of York, 2011. 
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directly ordered with the population sizes used; as can be seen from Table 30, which shows 

the population sizes35 used for this experiment. 

 

Figure 45 Various levels of crossover applied to finding the minimum value for the Rosenbrock Function with a 
tournament size of four 

The true effectiveness of different levels of crossover cannot be assessed by inspecting 

Figure 45, as it is not clear whether the different plots are performing better than others 

due to the initial population size, or because they represent a more effective search process.  

Figure 46 shows the results of the same experiment as seen in Figure 45, now implemented 

with a tournament size of twenty. Again it is not possible to determine the relative 

effectiveness of the different search methods, as the difference in population size appears 

to affect the results more dominantly than the differences in the search strategies.   

It may be the case, that if this were a more challenging problem to solve, the plots would 

not converge on a solution so quickly and the relative effectiveness of the search techniques 

could have been identified.    

                                                     
35 Population size is the sum of mu and lambda. 
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Figure 46 Various levels of crossover applied to finding the minimum value for the Rosenbrock Function with a 
tournament size of twenty 

Table 28 and Table 29 show the average evaluations and the computational effort required 

to solve the Rosenbrock function; using tournament sizes of four and twenty respectively. It 

can be seen from these results that normal Cartesian Genetic Programming, implemented 

without crossover, produced the most effective search when compared to BLX-0 crossover 

using a tournament size of four; but only by a small margin. When BLX-0 crossover was 

implemented using a tournament size of twenty, the most effective search was produced 

using a crossover percentage of 0%; this result was not mirrored by the computational 

effort. 0% crossover does not implement the BLX-0 crossover, but is distinct from normal 

Cartesian Genetic Programming as it uses the floating point form for the chromosomes and 

a tournament selection scheme. In both cases (for tournament sizes four and twenty) there 

appears to be no strong correlation between crossover percentage and the average 

evaluations required to find a solution (or computational effort).   

When using a tournament size of four, Table 28 shows little difference between "Normal" 

and "0% Crossover", indicating that the presence of a tournament selection scheme is not 

influencing the search process of the Cartesian Genetic Program. This result was also 

mirrored in Table 29, now using a tournament size of twenty, as the average evaluations 

showed tournament selection to be beneficial and computational effort showed the 

opposite.     
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Table 28 Statistics used to analyse the Rosenbrock Function Problem - tournament size four 

Experiment Description Average Evaluations Computational Effort 

Normal CGP - integer representation 2,610 20,000 

Normal CGP - floating point representation 2,782 23,239 

0% Crossover 2,679 20,423 

25% Crossover 3,471 22,926 

50% Crossover 2,827 20,000 

75% Crossover 3,703 24,968 

 

Table 29 Statistics used to analyse the Rosenbrock Function Problem - tournament size twenty 

Experiment Description Average Evaluations Computational Effort 

Normal CGP - integer representation 2,610 20,000 

Normal CGP - floating point representation 2,782 23,239 

0% Crossover 2,399 20,824 

25% Crossover 2,492 22,926 

50% Crossover 2,958 22,605 

75% Crossover 2,770 22,605 

 

The parameters found to be most suitable for the Rosenbrock function are given in Table 30 

and Table 31; for crossover implemented with tournament sizes of four and twenty 

respectively. For the majority of the experiments, mu values of one were found to produce 

the best results. Values for the lambda parameters varied in a seemingly random manor; 

with no clear pattern or correlation to crossover percentage. The population sizes found to 

be most suitable, when using a tournament size of four, were consistently above the 

tournament size, except for the highest crossover percentage of 75%. This result was not 

seen when the tournament size was increased to twenty; with the population sizes now 

much closer to the tournament size. As previously mentioned, population sizes at, or near 

the tournament size, have the affect of removing the effect of the tournament selection 

process.   

The mutation rates found to produce the best results for this optimisation problem were 

the highest used throughout this project. As previously mentioned, the authors 
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implementation of mutation is slightly different from that usually employed, the authors 

percentage mutation refers to the number of nodes which are changed, not the number of 

parameters in the chromosome. Even when taking this difference into account, the 

mutation rates found to be most suitable for the Rosenbrock problem are still very high.   

Table 30 Best Parameters found for the Rosenbrock Function Problem - tournament size four 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 1 6 130% 

Normal CGP - floating point representation 1 6 130% 

0% Crossover 1 10 70% 

25% Crossover 1 10 50% 

50% Crossover 1 17 160% 

75% Crossover 1 4 60% 

 

Table 31 Best Parameters found for the Rosenbrock Function Problem - tournament size twenty 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 1 6 130% 

Normal CGP - floating point representation 1 6 130% 

0% Crossover 1 19 110% 

25% Crossover 1 23 140% 

50% Crossover 3 19 130% 

75% Crossover 2 20 170% 

 

Finally for the analysis of the Rosenbrock function, Figure 47 shows graphically a comparison 

between the integer and the floating point form for the chromosomes. It can be seen that 

there appears to be almost no difference between the two representations. By inspecting 

Table 28 (or Table 29) it can be seen however, there is a slight difference and that the 

floating point form appears to be performing slightly worse than the integer counterpart. 
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Figure 47 Normal Cartesian Genetic Programming applied to finding the minimum value for the Rosenbrock function 
using conventional integer chromosome representation and floating point representation  

Figure 48 and Figure 49 show graphically the results of applying normal Cartesian Genetic 

Programming, and that implemented with 0%, 25%, 50% and 75% crossover, to the 

Griewank function; using tournament sizes of four and twenty respectively. In both cases 

normal Cartesian Genetic Programming outperformed all levels of crossover percentages; 

for both tournament sizes. As with the results from the Rosenbrock function, the differences 

in the fitnesses on the first evaluation appear to be directly related to population size; see 

Table 34 and Table 35. In this instance however, it is thought that this is not the only reason 

why normal Cartesian Genetic Programming is outperforming crossover implementations. 

As is shown in Figure 49, Cartesian Genetic Programming starts at a disadvantage and still 

manages to outperform the other strategies. The plots of different levels of crossover also 

show that increasing the crossover percentage decreases the effectiveness of the search for 

both tournament sizes investigated; four and twenty. It is clear from these two plots that 

BLX-0 crossover is operating more effectively when implemented with the larger 

tournament size; twenty.  
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Figure 48 Various levels of crossover applied to finding the minimum value for the Griewank Function with a tournament 
size of four 

 

Figure 49 Various levels of crossover applied to finding the minimum value for the Griewank Function with a tournament 
size of twenty 

The same result seen graphically in Figure 48 and Figure 49 is also present in Table 32 and 

Table 33; normal Cartesian Genetic Programming outperforming all levels of crossover using 

both tournament sizes investigated. This result is shown by both the average number of 

evaluations needed to find a solution and the computational effort. It can also be seen in 

Table 32 and Table 33 that increasing the crossover percentage decreases the effectiveness 

of the search for both tournament sizes investigated; again confirmed by both average 

evaluations and computational effort.  

Table 32 and Table 33 also show, for both tournament sizes, that the presence of a 

tournament selection scheme is detrimental to the search process; as can be seen by 

comparing the "Normal" statistics to those calculated for "0% Crossover".  
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Table 32 Statistics used to analyse the Griewank Function Problem - tournament size four 

Experiment Description Average Evaluations Computational Effort 

Normal CGP - integer representation 10,320 64,350 

Normal CGP - floating point representation 10,526 65,105 

0% Crossover 11,849 89,176 

25% Crossover 12,391 94,159 

50% Crossover 13,040 101,899 

75% Crossover 14,242 128,012 

 

Table 33 Statistics used to analyse the Griewank Function Problem - tournament size twenty 

Experiment Description Average Evaluations Computational Effort 

Normal CGP - integer representation 10,320 64,350 

Normal CGP - floating point representation 10,526 65,105 

0% Crossover 11,249 79,293 

25% Crossover 11,695 94,159 

50% Crossover 12,467 109,734 

75% Crossover 13,282 129,114 

 

As with the Rosenbrock function, Table 34 and Table 35 show that for the Griewank 

function, mu values of one were found to be most suitable in nearly all cases. The lambda 

values found to produce the best results for the Griewank function were also similar to 

previous results; except for 0% crossover, tournament size twenty, which had a high value 

of 27. The population sizes also appeared to decrease with crossover percentage, and were 

never significantly greater than the tournament size; except for 0% crossover, tournament 

size twenty, previously mentioned. The mutation rates, in complete contrast to the 

Rosenbrock results, were all very low; 5% or 10%.  
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Table 34 Best Parameters found for the Griewank Function Problem - tournament size four 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 1 8 10% 

Normal CGP - floating point representation 1 8 10% 

0% Crossover 1 5 5% 

25% Crossover 1 5 5% 

50% Crossover 1 5 5% 

75% Crossover 1 4 5% 

 

Table 35 Best Parameters found for the Griewank Function Problem - tournament size twenty 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 1 8 10% 

Normal CGP - floating point representation 1 8 10% 

0% Crossover 2 27 10% 

25% Crossover 1 20 5% 

50% Crossover 1 20 5% 

75% Crossover 1 19 5% 

 

Finally for the Griewank function, Figure 50 shows graphically a comparison between 

Cartesian Genetic Programming implemented with integer and floating point chromosome 

representation. As can be seen from Figure 50, and from Table 32 (or Table 33), the floating 

point representation is not effecting the search process to any significant amount.    
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Figure 50 Normal Cartesian Genetic Programming applied to finding the minimum value for the Griewank function using 
conventional integer chromosome representation and floating point representation 

The final function optimisation problem investigated in this chapter is the shekel function. 

The same graphical plot of average fitness against evaluations is shown in Figure 51 and 

Figure 52; for BLX-0 crossover implemented with tournament sizes of four and twenty 

respectively. From the two graphs described, it appears that a tournament size of twenty, 

rather than four, is more effective for this particular problem when using BLX-0 crossover. 

Figure 51 shows normal Cartesian Genetic Programming out performing all levels of 

crossover when using a tournament size of four. When using a tournament size of twenty 

however, the results appear similar, with different plots intercepting each other at various 

points; indicating that different levels of crossover are more effective at different stages of 

the search.  
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Figure 51 Various levels of crossover applied to finding the minimum value for the Shekel Function with a tournament 
size of four 

 

Figure 52 Various levels of crossover applied to finding the minimum value for the Shekel Function with a tournament 
size of twenty 

The average number of evaluations required to find a solution and the computational effort 

are given for the Shekel problem case in Table 36 and Table 37; for tournament sizes four 

and twenty respectively. Strangely, for both tournament sizes four and twenty, the average 

evaluations and the computational effort statistics indicate that different strategies 

produced the best search results. When using a tournament size of four, Table 36 shows 

that normal Cartesian Genetic Programming produced the best search results according to 

the average evaluations, but the computational effort indicates that 0% crossover produced 

the best results. When using a tournament size of twenty, the average evaluations shows 

that 0% crossover produced the best search results whereas computational effort indicates 

75% crossover. This confusion in the results is likely to be due to the fact that the 
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effectiveness of the different levels of crossover are similar; especially for when a 

tournament size of twenty is been employed by the crossover.  

Table 36 Statistics used to analyse the Shekel Function Problem - tournament size four 

Experiment Description Average Evaluations Computational Effort 

Normal CGP - integer representation 34,428 252,362 

Normal CGP - floating point representation 34,310 244,160 

0% Crossover 41,456 262,660 

25% Crossover 44,951 244,160 

50% Crossover 43,363 279,369 

75% Crossover 45,864 267,585 

 

Table 37 Statistics used to analyse the Shekel Function Problem - tournament size twenty 

Experiment Description Average Evaluations Computational Effort 

Normal CGP - integer representation 34,428 252,362 

Normal CGP - floating point representation 34,310 244,160 

0% Crossover 33,463 249,679 

25% Crossover 37,460 241,316 

50% Crossover 36,801 257,592 

75% Crossover 36,256 190,757 

 

Table 36 and Table 37 can also be used to identify if the presence of a tournament selection 

scheme affects the search process of a normal Cartesian Genetic Program; by comparing the 

"Normal" statistics with those calculated for "0% Crossover". It can be seen that when using 

a tournament size of four, the presence of a tournament selection scheme appears to be 

detrimental to the search process. When using a tournament size of twenty however, the 

presence of a tournament selection scheme appears to be aiding the search process. 

As with the previous two function optimisation problems, mu values of one were found to 

be the most suitable for the Shekel function for both tournament sizes four and twenty; see 

Table 38 and Table 39 respectively. A large range of lambda values were found to produce 

the best results, from the lower limit of the tournament size, to reasonably high values in 
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both cases. The mutation percentages found to produce the best search results were all in 

the range of 20% to 40%. 

Table 38 Best Parameters found for the Shekel Function Problem - tournament size four 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 1 8 40% 

Normal CGP - floating point representation 1 8 40% 

0% Crossover 1 3 30% 

25% Crossover 1 5 30% 

50% Crossover 1 6 20% 

75% Crossover 1 5 20% 

 

Table 39 Best Parameters found for the Shekel Function Problem - tournament size twenty 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 1 8 40% 

Normal CGP - floating point representation 1 8 40% 

0% Crossover 1 19 40% 

25% Crossover 1 25 30% 

50% Crossover 1 26 30% 

75% Crossover 1 20 40% 

 

Finally for the Shekel function, Figure 53 shows graphically a comparison between the 

integer and floating point form of the chromosomes. Figure 53 clearly shows that the 

floating point representation is not affecting the search process; a result confirmed by the 

average evaluations and computational effort seen in Table 36 (or Table 37). 



 

136 
 

 

Figure 53 Normal Cartesian Genetic Programming applied to finding the minimum value for the Shekel function using 
conventional integer chromosome representation and floating point representation 

16.4 Conclusion  

It can be concluded that BLX-0 crossover is not offering a significant advantage to the search 

process. The only instances of normal Cartesian Genetic Programming not producing the 

best results was for the Shekel function; which was a tie between 0% and 75% crossover36.  

The presence of crossover produced similar results to Cartesian Genetic Programming 

implemented without crossover (the Rosenbrock and Shekel functions) or resulted in a 

significant disadvantage (the Griewank function). None of the function optimisation 

problems investigated showed BLX-0 crossover to produce significantly better results than 

normal Cartesian Genetic Programming; at best the results were similar. There also 

appeared to be no positive correlation between crossover percentage and search 

effectiveness, in fact for the Griewank function there appeared to be a negative correlation; 

whereby increasing the crossover percentage actually made the search worse. It is therefore 

concluded that BLX-0 crossover is not a beneficial addition to Cartesian Genetic 

Programming when applied to function optimisation type problems.  

It is understood that only a specific form of function optimisation problem has been 

investigated in this chapter. For this reason it is not possible to speculate that BLX-0 

crossover would be detrimental to all function optimisation type problems. It seems clear 

however for the simplistic smooth search spaces provided, that BLX-0 crossover is not 

offering an advantage.  

                                                     
36 Where 0% crossover does not actually implement BLX-0 crossover; only a tournament selection scheme. 
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Interestingly, better results were always found with the higher tournament size of twenty, 

when using BLX-0 crossover, than the lower size of four. If time had permitted it would have 

been beneficial to see if this trend continued with increasing tournament size; possibly to a 

point which produced better results than normal Cartesian Genetic Programming. However 

due to time restraints this investigation is left for further work.   

It is not possible to reach a conclusion over how the presence of a tournament selection 

scheme affects the search process of a Cartesian Genetic Program; for function optimisation 

type problems. This is due to tournament selection appearing to be ineffective for the 

Rosenbrock function, detrimental to the Griewank function and beneficial/detrimental to 

the Shekel function depending upon the tournament size used.   

It can be concluded that the floating point chromosome representation, required by the 

BLX-0 crossover, is not affecting the search process to any significant amount. For the 

Rosenbrock function the floating point representation increased the average Evaluations by 

6.18% (13.9% for the computational effort). The Griewank functions average evaluations 

was increased by 1.96% (1.16% for the computational effort. Finally the number of 

evaluations was reduced by 0.34% (3.25% for the computational effort) for the Shekel 

function when using the floating point representation.  

The parameters found to produce the best search results were fairly erratic for the functions 

investigated; with the exception of mu values of one. There appears to be no obvious 

pattern with lambda values used or the mutation percentages; which ranged from 10% to 

110%. 

16.5 Thoughts  

The author feels that although Cartesian Genetic Programming can be applied to function 

optimisation type problems, it is not as elegant as other applications investigated e.g. 

symbolic regression and synthesis of Boolean logic. It seems there would be no reason to 

use a Cartesian Genetic Program to generate the parameters under optimisation, rather 

than a simpler Genetic Algorithm. It does show however the adaptability and general 

purpose nature of Cartesian Genetic Programming. An interesting investigation would be a 

comparison between a Cartesian Genetic Program and a Genetic Algorithm over a range of 

function optimisation problems, to assess their relative effectiveness.   
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17 Test Case 4: Wall Avoider  

The Wall Avoider is the final test case investigated during this project; it is also one of the 

most interesting, as described in the Possible Test Cases chapter. The Wall Avoider test case 

shares many characteristics with the synthesis of Boolean logic example; the distinction 

being that the Wall Avoider uses no specific truth table as the "target". Instead the fitness is 

determined by testing the suitability of the logic generated against a given task; navigating a 

unit across a "world" filled with obstructions. This has the affect of evolving a truth table 

which describes the logic to solve the given problem, whilst simultaneously evolving an 

implementation for the same truth table.  

17.1 The Experiments 

To evaluate the effectiveness of BLX-0 crossover the following strategies were compared: 

normal Cartesian Genetic Programming37, that which uses the floating point chromosome 

representation and that which uses 0%, 25%, 50% and 75% BLX-0 crossover. When 

implementing BLX-0 crossover a tournament size of ten was used. A single tournament size 

was chosen due to time restraints not permitting this parameter to be varied; as seen in 

previous chapters. A value of ten was chosen, as opposed to four or twenty, as previous 

experiments had shown both high and low values being effective for different test cases, 

and ten was a value in the centre of this range. These experiments assess the effectiveness 

of the BLX-0 crossover using a range of crossover percentages, compared to normal 

Cartesian Genetic Programming. They also independently assess the effect of the floating 

point chromosome representation, and the presence of a tournament selection scheme.  

As for all the previous test cases, the evolutionary parameters (mu, lambda and mutation 

percentage) used for each experiment are determined by the process described in Appendix 

B. This enables a fair comparison between the different strategies, as it cannot be assumed 

that the same parameters are the most suitable in each case.  

Originally the "world" to be navigated was that shown in Figure 54; the blue and yellow 

squares represent the starting position and the finish line respectively. This layout was not 

                                                     
37 Implemented without crossover, without tournament selection and using the usual integer chromosome 
representation. 
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selected however as it transpired during the initial testing phase, that the solution of 

following the wall to the left (initially moving downwards) represented a perfect fitness and 

was quickly converged upon38. Instead the "world" seen in Figure 55 was employed; with 

the starting position now represented by a green square. This is a much more complex 

"world" and contains the following challenging structures (from right to left): a continuous 

wall to avoid the solution of wall following, a vertical slalom to test simple wall avoiding, a 

horizontal slalom which represents a scenario whereby moving away from the finish line is 

overall beneficial, two narrow paths with the upper representing a shorter route and finally 

a structure where the direction of motion must be changed each move in order to avoid a 

collision. It is thought that this series of challenges creates a complex search space suitable 

for this final test case.   

 
Figure 54 Old “World” for the wall avoider problem case 

 

Figure 55 New “World” for the wall avoider problem case 

17.2  Design  

For this test case the inputs available to the Cartesian Genetic Program are ten binary 

values. The first eight values represent whether the blocks surrounding the unit are "free 

space", or "wall"; represented by zero and one respectively. These first eight inputs are 

                                                     
38 The author intended for a more challenging search space to be used for this final test case. 
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intended to represent the ability to "see" the surrounding "world", as shown in Figure 56. 

The remaining two inputs are the outputs of the previous move, this provides a simple 

"memory" for the unit; the initial "memory" will be that of moving forwards.      

 

Figure 56 Depiction of "Sight" 

There are two outputs from this Cartesian Genetic Program, which are again binary values. 

These outputs are decoded into movements with the following mapping: 00 - move up, 01 - 

move down, 10 - move left, 11 - move right. 

The evolved solutions are then assigned fitnesses determined by how successfully they 

"navigated" across the "world". This fitness is calculated as the distance from the finish line 

(in horizontal squares) after: 100 sense-act loops have passed, a wall has been struck or the 

finish line has been reached. If a wall is struck, the fitness is taken from the last "alive" 

position; striking a wall is considered to cause the navigating unit to "die". The fitness is 

taken from the last "living" position, as it was noticed during testing that the units had 

"suicidal tendencies", favouring being closer to the finish line over "life"; which was not the 

intention. Using this system, lower fitness values represent fitter chromosomes with zero 

representing a perfect solution.   

The function nodes made available to the chromosomes are the Boolean expressions: AND, 

OR, NAND, NOR and XOR; as used by Test Case 2: Synthesis of Boolean Logic. The number of 

available function nodes was set to twenty; this was an educated guess at a suitable number 

of function nodes which proved effective during initial testing.   

To ensure that the correct fitnesses were assigned to each chromosome, an elaborate 

testing procedure was undertaken. First the chromosomes were decoded into a truth table 

using Microsoft's excel; as described in Test Case 2: Synthesis of Boolean Logic. These truth 

tables were then implemented in Java, along with a model of the "world". The units were 

then tested within this "world"; with the current position displayed graphically along with 
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the distance from the finish line (the fitness). These generated animations were interesting 

to observe and provided a good testing strategy. A selection of the generated animations is 

available to the reader in Appendix D.  

17.3 Results 

The first set of results presented in this chapter is a comparison between normal Cartesian 

Genetic programming and that which employs 0%, 25%, 50% and 75% BLX-0 crossover. The 

results of this first experiment are given graphically in Figure 57, where it can be seen that 

normal Cartesian Genetic Programming is out performing all levels of BLX-0 crossover. As 

seen in previous chapters, the plots for the different levels of crossover percentage intersect 

at various points, indicating that different crossover strengths may be more beneficial at 

various stages of the search.  

 

Figure 57 Various levels of crossover applied to the Wall Avoider problem case with a tournament size of ten 

Table 40 gives the average evaluations, computational effort and the average final fitness 

for the same experiment previously described. The average final fitness was included as an 

additional statistic, due to the fact that the majority of the runs failed to reach a solution 

causing the average evaluations to become meaningless39. The experiments could have 

been ran for more evaluations, thus creating more meaningful average evaluation statistics; 

but as these experiments were already taking substantial time to undertake, this was not 

done.  

                                                     
39 The average evaluations statistic assumes the solution was found on the final evaluation if no solution was 
found.  
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All three statistics given in Table 40 indicate that normal Cartesian Genetic Programming, 

implemented without BLX-0 crossover, produced a better search than all levels of crossover. 

It also appears that there is no correlation between the effectiveness of the search and 

crossover percentage. 

Table 40 Statistics used to analyse the Wall Avoider problem case - tournament size ten 

Experiment Description Average 

Evaluations 

Computational 

Effort 

Average Final 

Fitness 

Normal CGP - integer representation 197,106 22,562,201 13.705 

Normal CGP - floating point representation 197,235 29,247,841 13.762 

0% Crossover 199,506 153,044,694 14.52 

25% Crossover 199,092 83,269,001 14.248 

50% Crossover 199,274 153,044,694 14.284 

75% Crossover 199,995 153,044,694 14.23 

 

Table 41 shows the parameters which were found to be most suitable for the different 

search strategies investigated in this chapter. It can be seen that for all of the strategies, mu 

values of one or two were found to produce the best results and the lambda values were all 

in the range of 10 - 13. This resulted in all the population sizes only being slightly higher than 

the tournament size. The mutation rates were all in the range of 15% - 25%, with no 

apparent correlation with crossover percentage. 

Table 41 Best Parameters found for the Wall Avoider problem case - tournament size ten 

Experiment Description Mu Lambda Mutation 

Normal CGP - integer representation 1 11 25% 

Normal CGP - floating point representation 1 11 25% 

0% Crossover 2 12 20% 

25% Crossover 1 10 15% 

50% Crossover 2 10 25% 

75% Crossover 2 13 20% 

 

Finally Figure 58 gives graphically a comparison between the integer and floating point 

chromosome representation. It can be seen that the use of the floating point form is not 

affecting the search process; this result is also shown in the statistics given in Table 40.  
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Figure 58 Normal Cartesian Genetic Programming applied to the Wall Avoider problem case using conventional integer 
chromosome representation and floating point representation 

17.4 Conclusion 

Although only one "world" layout was investigated, using only one tournament size, it 

seems that the presence of BLX-0 crossover is not offering an advantage over normal 

Cartesian Genetic Programming implemented without crossover. This result was seen both 

graphically in Figure 57 and in the statistics given in Table 40. There also appears to be no 

correlation between crossover percentage and the effectiveness of the search, indicating 

that crossover is not offering any advantage. It should be noted however, that only one 

tournament size was investigated and there may be a tournament size, which when used by 

BLX-0 crossover, outperforms normal Cartesian Genetic Programming; although from 

previous test cases this seems unlikely.   

The floating point representation appears once again to produce no significant change to 

the search process; as can be seen from Table 40 and Figure 58. This is a common result 

seen across the majority of the test cases.  

It appears once again that the presence of a tournament selection scheme is detrimental to 

the search process; when using Cartesian Genetic Programming. This can be seen by 

comparing the normal Cartesian Genetic Programming's results to those obtained for 0% 

crossover. It can also be seen that the population sizes were always close to the tournament 

size (when using tournament selection), which as previously mentioned reduces the effect 

of the tournament selection process.  
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The parameters were fairly consistent for all of the experiments investigated in this chapter. 

There appeared to be no correlation with crossover percentage or any noteworthy 

difference between when/when not using crossover.  
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18 Additional Investigations  

This chapter does not continue the investigation into the effectiveness of BLX-0 crossover 

when used by Cartesian Genetic Programming. Instead it will demonstrate the power of 

Cartesian Genetic Programming40 (and by extension other forms of Genetic Programming) 

applied to two previously seen test cases. This was carried out at the author’s interest and 

recorded here for the reader’s interest. 

18.1 Optimised Full Adder  

The full adder circuit has been seen previously in this project in Test Case 2: Synthesis of 

Boolean Logic. The aim of this test case was to implement a full adder circuit with no 

constraints on the number or type of logic gates used. One of the powerful properties of 

Genetic Programming is that complex design criteria can be added to the fitness function 

which would usually cause traditional design processes to become less effective. These 

criteria may include: overall propagation delay, overall cost, the number of logic gates or 

types of logic gates.  

To demonstrate this power the fitness function was altered so it now favoured using fewer 

logic gates41, therefore changing the search to not only produce a full adder but one which 

uses the least number of gates. This was achieved by calculating the fitness to be 100 plus 

the number of incorrect outputs, when the circuit did not correctly implement a full adder. 

If however the circuit did correctly implement a full adder, the fitness was calculated as the 

number of active function nodes. The large offset of 100 was to ensure it was never possible 

to achieve a better fitness than a functioning full adder by using as fewer gates as possible. 

The sudden reduction in fitness value should not affect the search process, as the elite 

promoted members of the population are the fittest, and not dependant on by how much 

they are fitter that the rest of the population.  

For this investigation the parameters were as follows: mu = 1, lambda = 4, mutation = 20% 

and number of function nodes = 20.  

                                                     
40 This is using "Normal" Cartesian Genetic Programming.  
41 This can be used as a criterion to promote cheap circuit designs. 
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The Cartesian Genetic Program was given 2,500,000 evaluations to find the best solution; 

although on average 12903.25 evaluations were required. One of the circuits found which 

implemented a full adder with the fewest number of logic gates is shown in Figure 59; 

adapted from [58]. This is in fact the same circuit as the conventional full adder circuit given 

in Figure 60, taken from [58]. The XOR gate at the output "Cout" in Figure 59, in replace of 

the OR gate seen in Figure 60, has no effect on the operation of the circuit. Other five logic 

gate solutions were also found, but are not shown in this report.  

This example shows quite clearly how Genetic Programs can be used to solve real world 

problems with real world constraints.   

 

Figure 59 Best Full Adder circuit evolved by the authors Cartesian Genetic Program 

 

Figure 60 Conventional Full Adder circuit 

 

18.2 Efficient Wall Avoider  

The Wall Avoider has been seen previously in Test Case 4: Wall Avoider. In this previous 

example the fitness assigned to each chromosome was the horizontal distance in squares 

from the finish line after: the maximum number of moves had been allowed, a wall had 
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been struck or the finish line reached. This led to the evolution of a solution which navigated 

it's self across the "world".  

In this chapter the fitness function used by the wall avoider was altered so as to try and 

promote not only solutions to crossing the "world", but solutions which achieved this in the 

least number of moves; hence efficient wall follower. The fitness function was altered to the 

following rules: if a wall is struck the assigned fitness is the distance from the finish line plus 

the maximum allowed moves (100), if the maximum number of moves elapses the fitness is 

also the distance from the finish line plus the maximum allowed moves and finally if the 

finish line was reached the fitness is the number of moves which was required in doing so. 

The objective fitness was then set to zero42 and left to run for an extended period43.  

This change in fitness function had the desired effect of reducing the number of moves 

required to navigate the "world" from ~100 down to 80. Various solutions found to crossing 

the "world", requiring a range of movements, are available to the reader in Appendix D. 

Again this example shows the power and adaptability of Genetic Programming to produce 

solutions to a wide range of problems with specific criteria. 

 

 

 

 

 

 

 

 

 

                                                     
42 An unachievable goal. 
43 400 million evaluations! 
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19 Conclusion 

This chapter describes the conclusions reached surrounding the effectiveness of BLX-0 

crossover when implemented by Cartesian Genetic Programming. The chapter is sectioned 

into sub headings covering different aspects of the investigation. 

Differences in Implementation reviews whether the Cartesian Genetic Program 

implemented by the author was sufficient to correctly assess the effectiveness of BLX-0 

crossover. The Crossover Technique section reaches a high level conclusion over the overall 

effectiveness of BLX-0 crossover. The Floating Point Representation section reports on 

whether the floating point chromosome representation, required by BLX-0 crossover, 

impacts on the effectiveness of Cartesian Genetic Programming. The Tournament Selection 

section reviews the effect of employing a tournament selection scheme; as used when 

implementing BLX-0 crossover. The Parameters section reaches conclusions on the 

parameters found to be most suitable during the project. Finally the Range of Test Cases 

Investigated discusses if the range of test cases used during the project were suitable and 

sufficient to assess the effectiveness of BLX-0 crossover.  

19.1 Differences in Implementation  

As mentioned in Repeating Janet Clegg's Experiments, there were some slight differences 

between the author's and Janet Clegg's implementations. The first was the method by which 

mutation percentage was translated into the actual number of mutations carried out on 

each chromosome. The author used the product of the number of nodes44 and mutation 

percentage, whereas Janet Clegg used the product of the number of chromosome 

parameters and mutation percentage. It is understood that Janet Clegg's implementation is 

the standard form and the author's implementation is unusual. It is thought however that 

this difference would not have affected the results presented during this project. This is 

thought because although the methods of calculating the number of mutations are 

different, it only causes differences in the mutation percentage required to cause the same 

number of actual mutations and as the parameters were optimised for each experiment this 

should not affect the analysis of BLX-0 crossover.  

                                                     
44 Function plus output. 
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The second difference, also related to mutation, was that Janet Clegg did not employ 

mutation on the members of the population generated by crossover. The author, unlike 

Janet Clegg, applied mutation to those children generated using crossover. It is thought, but 

was not proven, that the author’s method is more likely to produce a better search. This 

was thought because when the population converges on a solution, all of the members of 

that population become similar, and so the crossover operator has little to no effect. In this 

case, not mutating the children generated by crossover causes the population to contain 

many instances of the same chromosome; this offers no advantage to the search process.   

It is concluded therefore that the author’s Cartesian Genetic Program and implementation 

of BLX-0 crossover was sufficient to fairly assess the effectiveness of the new crossover 

technique.   

19.2 The Crossover Technique 

Overall this project has shown the BLX-0 crossover, as used by Janet Clegg in her original 

paper [1], does not benefit the search process for Cartesian Genetic Programs. The only 

exception was symbolic regression problems, which showed BLX-0 crossover producing a 

more efficient search process than Cartesian Genetic Programming implemented without. 

This was also shown to be the case in Janet Clegg's original paper. For all other test cases 

investigated (synthesis of Boolean logic, function optimisation and wall avoider) it has been 

shown that BLX-0 crossover, as applied to Cartesian Genetic Programming, is detrimental to 

the search process.  

It was seen for the symbolic regression and function optimisation test cases, that BLX-0 

crossover performed better with larger tournament sizes. Further work could therefore 

investigate the same test cases used throughout this project, but over a wider range of 

tournament sizes. This would investigate if BLX-0 crossover could outperform normal 

Cartesian Genetic Programming if a suitable tournament size were used.  

It was also indicated in many of the graphical plots (Figure 32, Figure 34, Figure 52 and 

Figure 57) that variable crossover may have offered a greater advantage that employing the 

same percentage strength throughout. This was shown by the plots of different crossover 

percentages intersecting each other at various stages of the search. These result show that 

there is a real possibility that variable BLX-0 crossover would perform more effectively that 
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non-varying. Janet Clegg also found variable crossover to be more beneficial than flat rates 

in her paper [1].  

19.3 Floating Point Representation  

As mentioned throughout this report, BLX-0 crossover relies on the chromosomes being 

represented in a floating point form. It is therefore important to ensure that this new 

chromosome representation does not affect the operation of Cartesian Genetic 

Programming. It has been shown, for all test cases investigated, the floating point 

chromosome representation is not affecting the search process to any significant extent. It 

is therefore concluded that the floating point chromosome representation does not affect 

the search process.  

An interesting result was that in all cases, the results obtained for normal Cartesian Genetic 

Programming, using the integer and floating point chromosome representation, were never 

identical; with the integer form slightly outperforming the floating point form in some cases 

and vise-versa. It is thought, that these differences are the result of the random nature of 

the heuristic search not being completely removed by the averaging process. This however 

does not explain some of the larger differences seen; such as in Test Case 1: Symbolic 

Regression, Table 8, which shows a 7.7% difference between the average evaluations 

required to reach a solution.  

If it is indeed the case that the floating point representation does not affect the search 

process, as has been shown in the majority of cases, it would enable Cartesian Genetic 

Programming to employ many different forms of crossover previously uninvestigated. An 

important point to remember is that when using the floating point representation, it is 

necessary to employ an additional decoding layer to convert the floating point 

chromosomes into their integer counterparts. This process incurs an additional time debt to 

the overall search time; which would have to be overcome by any benefit of the crossover 

been employed. This was an aspect of the floating point chromosome representation which 

was not investigated during this project. If a crossover technique, which used the floating 

point form, was ever found to offer a significant advantage, this additional time debt would 

have to be considered before a fair conclusion could be drawn.  
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19.4 Tournament Selection 

As mentioned previously in this report, BLX-0 crossover as implemented by Janet Clegg 

employs the use of a tournament selection scheme to select the parents of the children 

generated using crossover. It was therefore investigated how the presence of a tournament 

selection scheme influenced the search process of a normal Cartesian Genetic Program.  

The results on how the presence of a tournament selection scheme affects the search 

process of a “normal” Cartesian Genetic Program were inconclusive. Two of the four test 

cases investigated, symbolic regression and function optimisation, showed tournament 

selection to be beneficial for some of the examples and not for others. The remaining two 

test cases, synthesis of Boolean logic and the wall avoider, showed tournament selection to 

be detrimental for all examples investigated. It therefore appears that employing a 

tournament selection scheme is not beneficial to the operation of Cartesian Genetic 

Programming, but further investigation would have to be undertaken for this to be 

confidently concluded. 

Another aspect of tournament selection is the effect of the tournament size when using 

BLX-0 crossover. This was investigated as it was unknown which tournament size would 

produce the best results when using BLX-0 crossover. Interestingly, two of the four test 

cases investigated45, symbolic regression and function optimisation, showed the best results 

were obtained when using the highest tournament size. It is therefore unknown if Cartesian 

Genetic Programming, implemented with BLX-0 crossover, would produce better results if 

higher tournament sizes were used. Further work is therefore needed to investigate the 

effectiveness of BLX-0 crossover over a larger range of tournament sizes. This would identify 

if BLX-0 crossover offers an advantage when suitable tournament sizes are used.  

It has been shown that the effect of the tournament selection scheme, as applied to 

“normal” Cartesian Genetic Programming, is likely to be detrimental to the search process. 

It would therefore make an interesting investigation, if the effectiveness of BLX-0 crossover 

could be assessed without the use of a tournament selection scheme. This could be 

                                                     
45 Of the remaining two test cases: synthesis of Boolean logic found a tournament size of four produced the 
best result and only one tournament size was investigated for the wall avoider.    



 

155 
 

achieved by fixing46 the mu parameter as two47, promoting these as the elite members as 

before, and then generating the remaining population using these two elite members as the 

parents. This would have the effect of implementing BLX-0 crossover, without the 

employment of a selection scheme. If time had permitted this technique would have been 

investigated during this project, unfortunately it is left as a possible further investigation.  

19.5 Parameters 

The only conclusion which can be drawn over the parameters is low mu values appeared to 

produce the best results; equalling one or two in most cases. This was the only parameter 

which was consistently found throughout all of the investigations. Lambda values and 

mutation rates ranged massively between test cases and even between specific test case 

examples.  

An interesting pattern in many of the optimised parameters was how the population sizes 

found to produce the best results were often close or equal to the tournament size. It is 

thought that this has the implication of removing the effect of the tournament selection 

scheme. For example, if the population is equal to the tournament size, then the same two 

best chromosomes are always selected as the parents, thus rendering the process of a 

tournament moot. The result that the population size often approached the tournament 

size (when optimising the parameters), could therefore count towards a conclusion that 

tournament selection is detrimental to the search process.  

19.6 Range of Test Cases Investigated   

It is thought that a good range of test cases were selected to investigate the effectiveness of 

BLX-0 crossover as applied to Cartesian genetic Programming.  

The symbolic regression and the synthesis of Boolean logic test cases were both examples 

which utilised the ability of Cartesian Genetic Programming to evolve programs; rather than 

simply optimise parameters. The function optimisation test case was important, as nearly all 

problems, theoretical and practical, can be broken down into the process of optimising 

predetermined parameters. The final test case investigated, the Wall Avoider, was a more 

                                                     
46 It would be possible to use varying mu values if the crossover was implemented to use a variable number of 
parents, which is perfectly possible.  
47 A value often found to be effective.  
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unusual test case as it involved the evolution of a program, like the symbolic regression and 

the synthesis of Boolean logic test cases, but without the author predetermining the 

operation of the program; as seen when defining a truth table in the synthesis of Boolean 

logic test case. The Wall Avoider test case also applied two of the programs outputs back as 

inputs, thus achieving simple feedback which adds greatly to the level of complexity which 

can be achieved by the evolved programs. Selecting such an unusual test case was not 

strictly necessary for the investigation into the effectiveness of BLX-0 crossover, but was 

chosen as an example of something to which Cartesian Genetic Programming had not been 

previously applied.  

If more time were available, the Artificial Ant test case would have been the next to be 

investigated; as the author wished to investigate if Finite State Machines could be evolved 

using Cartesian Genetic Programming. This would have been approached by considering the 

feedback loops to contain values which represent the current state, and the remaining 

inputs as regular inputs to a Finite State Machine. It is understood that this investigation 

could have been undertaken using the Wall Avoider test case; which also implemented 

feedback. This was not undertaken however, as the number of inputs for the Wall Avoider is 

much larger than for the Artificial Ant and would therefore have been much harder to 

analyse.  
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20 Review of the Project  

This chapter is included to provide a final review of the project, discussing the key aspects 

and important sections. The Meeting the Project Aims and Objectives section discusses 

if/how the project met its aims and objectives. The Design and Coding sections will evaluate 

the methods used during the respective stages of the project. Software Choices will 

evaluate whether the JAVA programming language used for this project was a suitable 

choice. The Optimising Parameters section discusses the optimisation process and how it 

became a major aspect of the project. The Experimental Strategy section evaluates if the 

practices adopted during this project were suitably rigorous to provide confidence in the 

conclusions reached. The Time Management section addresses how the initial time line was 

followed and evaluates its overall usefulness. Finally the Overall (Personal) section provides 

a personal view on the project as a whole. 

20.1 Meeting the Project Aims and Objectives 

This section discusses how each objective of the project was addressed followed by if the 

overall aims of the project were achieved.  

20.1.1 Objectives 

All three of the primary objectives were achieved during this project. The first primary 

objective, investigating the effect of BLX-0 crossover on at least three test cases, was 

achieved by investigating four separate test cases and analysing the results with two 

statistical methods (and a graphical plot). The second primary objective, evaluating the 

effect of the floating point form, was evaluated by comparing Cartesian Genetic 

Programming with the integer and floating point chromosome representation; for each of 

the four test cases. The final primary objective, investigating the effect of the tournament 

selection scheme, was also evaluated by comparing Cartesian Genetic Programming with 

and without tournament selection; again for each of the four test cases. 

Unlike the primary objectives, not all of the secondary objectives were achieved. The first 

secondary objective, optimising the evolutionary parameters for each experiment, was 

undertaken for all of the investigated test cases. The following secondary objective, evaluate 

the parameters found to produce the best results, was also undertaken for each test case. 
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The penultimate secondary objective, investigating test cases to which Cartesian Genetic 

Programming has not already been applied, was achieved through the Wall Avoider 

investigation; although additional examples would have been ideal. The final secondary 

objective, publish the results obtain during this project, was not attempted due to the 

results not been considered worthy of publishing; although this was always an ambitious 

objective. 

20.1.2 Aims 

Both of the projects primary aims were achieved. The first primary aim was to evaluate if 

BLX-0 crossover offered a statistically significant benefit to Cartesian Genetic Programming. 

This was achieved via the four test cases, each evaluated using three techniques: graphical 

plot of average fitness against evaluation, the average evaluations to find a solution and 

using Koza’s Computational Effort. The second primary aim was to evaluate the effect of the 

floating point chromosome representation and tournament selection scheme on Cartesian 

Genetic Programming. This was also undertaken for each of the test cases.   

Both of the projects secondary aims were also achieved, although not to the extent which 

was desired. The first secondary aim, to study further the effects of the parameters 

governing Cartesian Genetic Programming, was undertaken, but little was learnt from the 

parameters which were found to be optimum. The final secondary aim was to apply 

Cartesian Genetic Programming to problems which it has not previously been applied. This 

aim was undertaken, the Wall Avoider test case, but it is felt that more inventive application 

could have been used; such as evolving finite state machines. 

20.2 Design 

The design stage of the project was relatively successful. The author ensured adequate time 

was assigned to the design stage to provided simple editing and testing of the code in the 

later stages. This paid dividends when these stages of the project were reached; especially 

as the code was edited and re-tested for every new test case.  

The author’s approach of conducting an initial design and starting the coding stage as early 

as possible was found to be very beneficial. This was because before coding had begun, it 

was hard to anticipate all of the various aspects of the program. When the final design was 
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then undertaken, the author was in a far more knowledgeable position to produce better, 

more thought-out designs.    

It should be understood, that the core Cartesian Genetic Program was very simple and 

therefore easy to implement. The challenging aspect of the code produced for this project 

was the additional features required for the investigations, including: tournament selection, 

floating point representation and BLX-0 crossover. For all of these features, it was required 

that they could be turned on/off quickly via the Parameters Class; this involved significant 

logic within the author’s Cartesian Genetic Program. It was also a requirement that the 

fitness function and the operations of the function nodes could be switched with minimal 

effort.  

20.3 Coding 

The coding stage of the project was undertaken quickly and effectively. This was in part due 

to a well thought-out design but also due to the author been fluent in the JAVA 

programming language. There were very few issues encountered during the coding stage, 

with the majority of the major bugs and issues solved within a day.  

The testing strategies used for the code were both effective and inventive. They relied 

mainly on simple printouts to the consol and through implementing sections of the code as 

other JAVA programs, MATLAB scripts and excel spreadsheets to compare the results. An 

example of a particularly inventive strategy was that used for the Wall Avoider. The evolved 

chromosomes were decoded in excel to produce the corresponding evolved truth tables, 

which were then implemented in JAVA to show graphically how the logic navigates the unit 

around their environment. These graphics are included in Appendix D for the reader’s 

interest.      

20.4 Software Choices 

On reflection of the overall project, the design decision to use the JAVA programming 

language may have not been the most suitable. Although the author maintains that the 

object orientated structure of JAVA did significantly reduce development and 

implementation time; in hindsight the increase in the program execution time is likely to 

have surpassed any initial saving. The author did consider migrating to C#, a C based purely 
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object orientated language, but reports found on the relative speeds of JAVA and C# 

indicated little difference [59] [60]. 

In hindsight, the author would have ignored the design advantages of object oriented 

languages and chosen C for its raw performance; or possibly C++ which is much faster than 

JAVA or C#, with some of the object oriented programming advantages, although certainly 

not as fully featured. 

20.5 Optimising Parameters 

As mentioned throughout the project, the optimising of parameters was undertaken for 

each experiment to ensure a fair comparison between all the strategies. This process is 

considered essential if fair conclusions were to be drawn on the effectiveness of BLX-0 

crossover. It should be noted however, that the process of optimising these parameters is 

thought to have consumed more time during this project than any other individual section 

or task; weeks were spent on optimising parameters alone. It is though that the optimising 

process was fair and complete, and the project would have been nothing without this 

essential stage.  

All of the parameters investigated when optimising the parameters for each experiment are 

available as excel spread sheets in Appendix D.  

20.6 Experimental Strategy 

 The author considers the experimental strategies used throughout this project to be fair 

and rigorous. Testing was undertaken for all sections of the code following a strict testing 

strategy and any newly introduced code was re-tested. Sections of code were also 

implemented in different languages (MATLAB, excel, Visual Basic) and used as a comparison 

to the JAVA version to ensure correct implementation.   

For each experiment, significant time was taken to find the parameters which produced the 

best results for each strategy. This ensured a fair comparison between the results which 

would not be possible if this step was not undertaken.  

When producing the statistics to analyse the effectiveness of the different strategies, 

averages were taken over 1000 runs; ensuring statistically significant results. Three separate 

techniques were used to compare the different strategies: a plot of average fitness against 
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evaluation, the average evaluations to reach a solution and Koza’s computational effort; all 

calculated using data from the 1000 runs. Using three separate methods ensured that the 

trends seen in the results were actually significant and not just artefacts in the methods 

used to describe the data.      

To assess the effectiveness of BLX-0 crossover in isolation, it was necessary to compensate 

for the effect of the floating point chromosome representation and tournament selection 

scheme; used alongside its employment. This ensured that BLX-0 was evaluated fairly and 

led to further insight into the floating point representation and tournament selection 

scheme; when applied to Cartesian Genetic Programming.      

20.7 Time Management  

The creation of a time line (Gantt chart) is considered an important step which ensures the 

project is viewed as a whole and forces all aspects of the project to be considered. It also 

helps to ensure that the project does not overrun and that it is appreciated at all times how 

much work is needed to be undertaken to complete the project. However, the project time 

line outlined for this project was not at all strictly followed; the design, coding and testing 

stages were undertaken much more efficiently than anticipated; whereas the optimising of 

parameters took significantly longer. For larger projects than the one undertaken here, the 

time line would have been updated with every completion, delay or update, to maintain an 

accurate representation of how the project is progressing. For this project however, it was 

not considered necessary to spend time maintaining a time line and so its main function was 

that of a to-do list ensuring the quantity of work to be completed was always clear. Overall 

therefore, the act of creating a time line was considered more beneficial than actually 

having it available to follow.  

It was decided during the planning stage, that the writing of this final report was to be 

continually completed throughout the project and not left as a final “write-up”. This 

decision was invaluable to the author, as the writing aspect of the project was considered 

the most challenging. Continuously “writing up” as the project progressed, helped focus the 

author to the important aspects of the project and ensured there was no anxiety over the 

final “write-up”.    
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20.8 Overall (Personal) 

Overall I am very pleased with this project. The background literature brought to my 

attention the shear scope for Evolutionary Strategies and their application into many subject 

areas. The constructing of my own Genetic Program and then applying it to a selection of 

different optimisation problems has given me real practical experience with these 

techniques. I also feel I have had a taste of what a career in research may involve, with the 

tedious nature of optimising the parameters to the excitement of watching the first evolved 

solutions to the wall avoider problem. If the research into the application of BLX-0 crossover 

had produced positive results, it would have been "the icing on the cake". I would have also 

attempted to publish the results; it is still a goal of mine to produce publishable work in the 

next few years. I consider this project to have acted as a taster to my next step of studying a 

PhD in a closely related research area; something I am very excited to be undertaking.      
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Appendix B. Optimizing Parameters  

Many of the experiments described during this project discuss the concept of optimising the 

parameters governing the evolutionary process. This appendix discusses how this is 

achieved.   

It should be noted, that there is no way of ensuring that the optimum parameters have ever 

been chosen, this is a search space in its self. Therefore, the process described in this 

section does not produce the optimum parameters, but should lead to suitable parameters. 

The process is begun by selecting typical parameters used by Cartesian Genetic Programs as 

shown in Table 42. In cases which require a higher population size, to accommodate the 

tournament size been employed, the mu parameter is increased.     

Table 42 Parameters typically used by Cartesian Genetic Programs 

Parameter Name Value 

Mu 1 

Lambda 4 

Population Size 5 

Mutation Rate48 ~5% 

 

The optimising of the parameters begins by setting the parameters to those given in Table 

42 as the initial parameters. Each individual parameter is then be varied separately (keeping 

the other parameters as the initial parameters). The values for each parameter which 

produced the best results are then used as the next set of parameters. This process is then 

repeated twice. Once this has been completed each individual parameter is varied once 

again, but this time keeping any positive changes made to the other parameters. It is 

thought that this produces a strong parameter set for each given test case. 

It should be noted, that when changing the population size (the sum of mu and lambda) the 

maximum number of generations is also changes ensure the maximum number of 

evaluations49 remains constant.  

                                                     
48 If 5% mutation actually leads to no mutation been carried out, due to the small size of the chromosome, 
then the smallest possible mutation rate which actually performs mutation is selected.  
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Appendix C. Computational Effort 

In order for comparisons to be made between different search methods, it is necessary that 

quantitative values are assigned to each experiment. Of the many methods of calculating 

such values, John Koza’s Computational Effort, as described in his influential book [13], is 

one of the most popular. The fact that it continues to be one of the most stated statistics 

may only be because of its previous popularity and not because it is the most suitable 

statistic. There are papers [61] which indicate that Koza’s Computational Effort is not the 

most suitable statistic and other parameters should be quoted in the literature. Regardless, 

Koza’s Computational Effort is widely used and is included throughout this project for 

completeness. 

The concept behind Computational Effort is to represent the number of evaluations50 

required to find a solution with a given probability. The equation for calculating 

Computational Effort is as follows: 

            
       

            
   

Where   is the population size,   is the number of generations, and   is the confidence level 

in reaching a solution. The confidence level   is usually set to 99%; this value is used 

throughout this project. The product of   and    represents the total number of evaluations 

analyzed during the experiment.        is the probability of finding a solution within the 

number of given evaluations; this value is found empirically form experiments.   

                                                                                                                                                                   
49 The number of evaluations is the maximum number of different solutions which are inspected. It is the 
product of population size and the maximum number of generations.  
50 Number of solutions inspected. 
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Appendix D. The Disc  

A disc is provided with this project to contain files which are both very large and significantly 

more useful as digital data; these includes all the experimental results and the author’s 

code. A HTML index file is included on the disc to aid navigation and to provide a clean user 

interface. The disc also includes autorun functionality, loading the HTML page when the disc 

is inserted into a disc drive; although depending on the users set up, this may not operate. If 

the autorun feature fails to load the HTML page, the user is instructed to navigate to the 

index.html file and open it in a web browser of their choice51.     

The disc contains a digital copy of this final report as a PDF file complete with functioning 

links; along with two academic papers which comprise the essential background reading. It 

also contains all of the author’s code used throughout this project with a digital copy of the 

Class Diagram showing its structure. There is also the raw data generated when optimizing 

the parameters and when conducting the large experiments. The Matlab scripts used to 

generate the 3D plots in the Possible Test Cases chapter are also available. Finally there is a 

selection of animations showing the Wall Avoider at various levels of competency. These 

animations are provided as .jar JAVA executables.        

 

 

                                                     
51 The author recommends Google Chrome, as it has inbuilt functionality to load PDF documents and the code 
files within the browser.   


