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ABSTRACT

Neuroevolution, the application of evolutionary algorithms
to artificial neural networks (ANNs), is well-established in
machine learning. Cartesian Genetic Programming (CGP)
is a graph-based form of Genetic Programming which can
easily represent ANNs. Cartesian Genetic Programming
encoded ANNs (CGPANNS) can evolve every aspect of an
ANN: weights, topology, arity and node transfer functions.
This makes CGPANNSs very suited to situations where ap-
propriate configurations are not known in advance. The
effectiveness of CGPANNSs is compared with a large number
of previous methods on three benchmark problems. The re-
sults show that CGPANNSs perform as well as or better than
many other approaches. We also discuss the strength and
weaknesses of each of the three benchmarks.

Categories and Subject Descriptors
1.2.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-

gramming; 1.2.6 [ARTIFICIAL INTELLIGENCE]: Learn-

ing— Connectionism and neural nets

General Terms
Algorithms

Keywords

Genetic programming, Neural networks, Machine learning

1. INTRODUCTION

Neuroevolution (NE) is the application of evolutionary al-
gorithms to the training of artificial neural networks (ANNs).
NE has many advantages over traditional gradient based
methods. These include: decreased likelihood of becoming
trapped in local optima, not requiring gradient information
which can be computationally expensive to obtain and is
suited to applications without a precise fitness function [47].
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NE methods which evolve weights and topologies also have
the advantage of not requiring the user to assume a suitable
topology, something which is often not known in advance.

A popular general class of techniques which employ evolu-
tionary techniques is Genetic Programming (GP) [22]. GPs
traditionally arrange nodes in a tree structure. This tree
structure, however, is not suited to ANNs which are com-
monly arranged in much less limited graph structures. For
example, graph structures allow the reuse of nodes, a key
property of ANNs and something which is not possible when
directly using tree structures. Cartesian Genetic Program-
ming (CGP) [28], is a form of GP whereby the nodes are
arranged in a graph structure, making it much more suited
to ANNs. CGP also has many advantages over traditional
GP, including redundancy in the chromosomes [29] and nat-
ural resilience to bloat [27]. Another previous study of ap-
plying a graph-based GP to ANNs was undertaken using
PDGP [38]. Although PDGP showed promising results, fur-
ther published research on its application to ANNs is not
found in the literature.

This paper reports the application of CGP to ANNs (CG-
PANN) on a number of benchmark problems and presents
the results in comparison to other NE and machine learning
(ML) techniques. The benchmarks chosen cover two large
areas of ML, control and classification.

An interesting aspect of CGPANN is that it allows multi-
ple connections between pairs of nodes. This artifact could
also be present in other NE methods, such as NEAT [41] or
SANE [31], but is not discussed in the literature. This be-
haviour enables CGPANN to evolve each node’s arity. This
combined with the ability to evolve weights, topology, num-
ber of nodes and the nodes transfer functions means CG-
PANN has complete control over the evolved ANNs. Other
possible consequences of allowing multiple connections be-
tween two nodes are also discussed in this paper.

An analysis of the utility of the benchmarks themselves for
comparing ML techniques is also discussed. There is noth-
ing wrong with the benchmarks, but often their usefulness
is undermined because many published methods use slightly
different implementations. This raises the questions about
whether or not differences in implementation are significant
in the comparisons between different algorithms. For in-
stance, when Stanley et al. published their results of apply-
ing NEAT to the double pole experiment [41], they used a
slightly modified sigmoidal transfer function. So when com-
paring NEAT to other NE techniques, which do not use their
modified sigmoidal transfer function, it is not known if the



Figure 1: A general form of CGP with chromosome given beneath, taken from [28]
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differences between results are due to the NE techniques,
the use of the modified sigmoidal transfer function, or both.

2. CARTESIAN GENETIC PROGRAMMING

CGP [28, 30] is a form of GP in which computational
structures are organised as directed, often acyclic graphs in-
dexed by their Cartesian coordinates. Each node may take
its inputs from any previous node or program input (al-
though recurrent graphs can also be implemented). The
program outputs are taken from the output of any inter-
nal node or program input. This structure leads to many of
the nodes described by the CGP chromosome not contribut-
ing to the final operation of the phenotype, these inactive,

r “junk”, nodes have been shown to greatly aid the evolu-
tionary search [29, 44, 50]. The representational feature of
inactive genes in CGP is also closely related to the fact that
it does not suffer from bloat [27].

The nodes described by CGP chromosomes are arranged
in a rectangular r X ¢ grid of nodes, where r and ¢ respec-
tively denote the user-defined number of rows and columns.
In CGP, nodes in the same column are not allowed to be con-
nected together (as in multi-layer perceptrons). CGP also
has a connectivity parameter [ called “levels-back” which de-
termines whether a node in a particular column can connect
to a node in a previous column. For instance if [ = 1 all
nodes in a column can only connect to nodes in the previous
column. Note that levels-back only restricts the connec-
tivity of nodes; it does not restrict whether nodes can be
connected to program inputs (terminals). It was later re-
alised however that any architecture (limited by the number
of nodes) could be constructed by arranging the nodes in a
1 x n format where the n represents the maximum number
of nodes (columns) and choosing | = n. Using this represen-
tation the user does not need to specify the topology, which
is then automatically evolved along with the program.

Figure 1 gives the general form of a CGP showing that a
CGP chromosome can describe multiple input multiple out-
put (MIMO) programs with a range of node transfer func-
tions and arities. In the chromosome string, also given in
Figure 1, F; denote the function operation at each node, C;
index where the node gathers its inputs and each O; denote
which nodes provide the outputs of the program. It should
be noted that CGP is not limited to only one data type, it
may be used for Boolean values, floats, images, audio files,
videos etc. CGP uses a (1 + \) — ES, the mutation opera-
tor and rank selection; no crossover operator is used. The
A value used by CGP is commonly set as four, which is the
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value used throughout this paper. The connection genes
in the chromosomes are initialised with random values that
obey the constraints imposed by the three CGP structural
parameters, r, c,l. The function genes are randomly chosen
from the allowed values in the function lookup table. The
output genes O; are randomly initialised to refer to any node
or input in the graph. The standard mutation operator in
CGP is very simple, it is point mutation [28]. It works by
randomly choosing a valid allele at a randomly chosen gene
location. The reason why both a simple operator and a sim-
ple evolutionary algorithm are so effective is related to the
presence of non-coding genes. Simple mutations can con-
nect or disconnect whole sub-programs, thus this operator,
during evolution explores a distribution of program topolo-
gies. Also the algorithm navigates the search space using
neutral drift. For a more detailed description of CGP and
these issues see [28].

2.1 Encoding Neural Networks

ANNSs are a natural application for CGP as both are struc-
tured using directed acyclic graphs. CGP can also evolve
cyclic graphs as used in recurrent ANNs. When CGPANNs
are used to encode ANNSs, the inputs are the same as used for
CGP, the connections are also left unchanged, the functions
are those suited to ANNs (sigmoid, hyperbolic tangent etc)
and the outputs are taken as the output of any hidden node
or input node. The only alteration necessary is an additional
gene for each connection in order to encode the connection
weights, as used by ANNs. These weights are real values
within a range specified by the user; set as [—1, 1] through-
out this paper.

As a direct result of the encoding method used by CG-
PANN it is possible, and indeed probable, that there will
be multiple connections between two nodes. This possibly
novel behaviour is due to the fact that the inputs to each
node are evolved and no interference is made to ensure they
do not connect to the same node multiple times. The pres-
ence of these multiple connections has three consequences.
The first is that the maximum effective weight range set
by the user (often [—1,1]) can be exceeded. This is due to
the multiple connections between nodes being equivalent to
one connection with the sum of the weights, see Figure 2.
Secondly, having multiple connections between two nodes
results in less connections to other nodes; this has the effect
of variable arity, again see Figure 2. Thirdly having multiple
connections between nodes could create resilience to future
mutations, as removing one connection does not remove the



Figure 2: Depiction that multiple inter-node con-
nections (above) can be simplified as one (below)

effect of the previous node on the latter. This ability to
have multiple connections between nodes maybe possible in
many NE methods which evolve topologies. However meth-
ods such as NEAT [42] or SAIN [31], which appear may
be able to evolve multiple connections between nodes unless
actively prevented, do not discuss the matter.

The user defined basic parameters which govern the op-
eration of a CGPANN are: maximum number of genera-
tions, mutation percentage, maximum number of nodes (i.e.
columms with rows set to one), connection weight range
and maximum arity. Other parameters can also include:
rows and columns, “levels-back” and transfer functions. In
this paper, for simplicity, only the basic parameters are used
with the “levels-back” parameter set as the number of nodes
(columns). Although CGPANN (and CGP in general) can
use many types of mutation operands, a simple point muta-
tion is used throughout this paper; where each gene in the
chromosome is changed to a new random value with a given
probability.

In summary the advantages of evolving ANN using CG-
PANN include: MIMO networks, recurrent and non-recurrent
networks, evolvable topology, evolvable arity, evolvable trans-
fer functions, evolvable weights, no bloat and the presence
of redundancy in the chromosomes aiding evolution.

3. RECENT RELATED WORK

To date there is very little published work on the applica-
tion of CGP to ANN; what has been published we discuss
here.

M. Khan et al. published [19, 20] describing the applica-
tion of CGPANN to both the single and double pole balanc-
ing benchmarks. They showed remarkable results for both
tasks, solving them faster (in terms of number of evalua-
tions) than any other NE published method. M. Khan et al.
also implemented a recurrent form of CGPANN [18] which
was again applied to the double pole balancing problem. The
reason for repeating the double pole balancing benchmark
is to offer a fairer comparison with other published results.
When M. Khan et al. conducted their experiments they al-
lowed the transfer functions used within the nodes to also be
evolved, by choosing between sigmoid and hyperbolic tan-
gent. Although the ability to evolve the transfer function,
along with the weights and topology, is one of the many ad-
vantages of NE methods, it was not used by other reported
NE methods and so weakens the comparison. They also
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used a “bang-bang” control system, whereas most reported
results for this benchmark use a continuous force. Addi-
tionally they added connection switches to the connections
between nodes; these switches were evolved within the chro-
mosomes as binary values indicating whether a connection
is made between the nodes. Although this additional gene
may be advantageous to the evolutionary process, this pa-
per uses CGP in its original form; further alterations will be
researched in the future.

Another application of CGP to ANN was published by G.
Khan et el. who used CGP to evolve a multi-chromosome
representation of realistic neurons to create neural networks
which more closely mimic the biological brain. Their method
was applied to the classic artificial intelligence problems
wumpus world [16] and the game of checkers [17], where
they showed their solution was capable of continuous learn-
ing within the task environment.

4. THE BENCHMARKS

The three benchmarks chosen to assess the effectiveness
of CGPANN cover a range of different applications to which
NE can be applied. They include the well known double?
pole balancing [45], the relatively new ball throwing [21]
and Cancerl taken from the Probenl set of benchmarks
for ANNs [37]. The first two benchmarks are control based
problems. The double pole balancing is a continuous (bal-
ancing) single output control problem and the ball throwing
is a multiple output problem which includes a one off event
(throwing) aspect. The final benchmark is a popular, and
well used, classification problem.

4.1 Double Pole Balancing

The double pole balancing benchmark has been used for
many decades in the artificial intelligence literature and is
simply the task of balancing two poles attached to a cart
with all components limited to one degree of freedom; see
[45] for diagrams and additional information. The equations
which govern the dynamics of the double pole experiment are
given in Equations 1, 2, 3 and 4 with the symbol definitions
and values given below.
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Where z is the carts position limited to [—2.4,2.4]m, 6; is
the i*® poles angle from virtual limited to [—36, 36]deg, F is
the force applied to the cart limited to [—10,10]N, [; is the
half length of the i*" pole with {1 = 0.5m and I = 0.05m,
M is the cart mass set as 1.0kg, m; is the mass of the i'!
pole with m; = 0.1kg and m2 = 0.01kg, p. is the cart-track

+ gsin 91-) (3)

m; = My

(4)

!There is also a single pole version but it appears be less
standardised (different initial conditions, parameters and
limits are used), and is also very easy for modern methods
to solve, weakening any comparison.



friction set as 0.0005 and pp; is the ith pole-cart friction set
as 0.000002.

The simulations are run using Fuler integration with a
time step of 0.01sec and the controller outputs were updated
every 0.02sec; the simulations were run for 100000 time steps
in each experiment. The simulations were always initialised
with the cart in the center of the track, the longer pole at
ldeg from vertical and the short pole at vertical.

The fitness of the solutions are determined by the number
of time steps that the controller can keep both poles within
the range [—36, 36]deg. Some implementations used by oth-
ers, such as [5], penalise rapid swinging?; this was not used
in the experiments presented here. The inputs to the con-
troller were the usual cart position, cart velocity, both pole
positions and both pole velocities.

The inputs are scaled to be within [—1,1] by assuming
their values would always be in the following ranges: cart
position [—2.4,2.4)m, cart velocity [—1.5,1.5]m/s, pole po-
sitions [—36, 36]deg and pole velocities [—115,115]deg/s.

The output of the controller is also in the range [—1,1]
which is then scaled to be between [—10,10]N in what is
commonly called “continuous force” as opposed to the bi-
nary “bang-bang force” which is sometimes used. A restric-
tion placed on the controller, also used by [6, 8, 45], is to
limit the magnitude of the applied force to always be greater
than %56 x 10N; this ensures the controller cannot position
the poles to be almost at the point of balance and then do
nothing until they fall.

4.2 Ball Throwing

The Ball Throwing experiment is taken from [21] where
it was used as a comparison between CoSyNE and Com-
pressed CoSyNE training algorithms. The goal of the task
is to throw a ball, initially attached at the end of a swinging
arm, a distance of 9.50m; slightly below the maximum pos-
sible distance of 10.202m. The arm is attached to a pivot
and initially hangs downwards under gravity; with the ball
located at the lower end. The controller can only see two
variables: the angle of the arm from vertical and the arm’s
angular speed. The controller also has two outputs: the
torque applied to the arm and whether or not to release the
ball.

Equation 5 describes the arm dynamics with the released
ball obeying regular Newtonian mechanics until the ground

is reached.
c\ o g - sin(0) T
(‘9’“’)_(‘“’ cwt Tt

Where 6 is the arm angle, w is the arms angular speed,
c is a constant to control the friction set as 2.5s5~ !, [ is the
arm length set as 2m, g is the gravity set as 9.81ms ™2, m is
the mass of the ball set as 0.1kg, and finally, T is the torque
applied to the arm whose value is limited to [—5, 5] Nm.

Figure 3 shows the set up of the benchmark with 6 and !
labelled. It can also be seen in Figure 3 how d, the distance
the ball is thrown, is measured. The value of d is then used
as the fitness assigned to each possible solution.

An additional constraint is that w is set to zero when
|0] > w/2. The simulation is run using Euler integration
with a time step of 0.01s and the controller outputs are also
updated every 0.01s.

()

*In these experiments [5] also removed velocity information.
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Figure 3: Depiction of the Ball Throwing Bench-
mark taken from [21]

2L

The inputs to the ANN are scaled to fit the range [0, 1]
by knowing that 6 can never exceed £7/2 and by the fact
that w can never exceed +5rad/s (found through simulation;
actual maximum value £4.4915rad/s). The torque output
of the ANNs is also scaled to meet the range [—5,5]Nm.
The ball is released when the release output is greater than
0.5.

As the original paper [21] did not state the transfer func-
tion used, it was assumed to be a regular sigmoid. The
values used to scale the inputs into a [0, 1] range were also
not provided by the original paper and so logical choices
were made.

4.3 Probenl: Cancerl

The Probenl [37] document is a collection of many, mainly
real world, classification benchmark problems for ANNS;
along with best practices concerning how to report and com-
pare results. Cancerl is one of the fifteen classification
benchmark problems and was originally constructed at the
University of Wisconsin Hospital [24]; the ‘1’ refers to the
permutation of the data as described in [37].

There are a total 699 entries in the breast cancer data
set each with the following details (scaled between [0, 1]):
clump thickness, uniformity of cell size, uniformity of cell
shape, marginal adhesion, single epithelial cell size, bare nu-
clei, bland chromatin, normal nuclei and mitosis. Each data
set also contains two classification flags; benign and malig-
nant. The data set contains 458 (66%) benign cases and 241
(34%) malignant. The first 525 entries are used for training
and the following 174 are used for testing. In some cases the
testing set is further divided into testing and validation so
the generalisation ability can be assessed during the search
for a solution; this was not done in this paper. As suggested
in [37] the squared error percentage was used for the fit-
ness function, Equation 6. Where 0yin and 0mqs are the
minimum and maximum output values form the ANN, N is
the number of outputs from the ANN, P is the number of
training examples, op; are the actual output values from the
ANN and t,; are the target outputs. The produced classifier
is then tested on the test data set, producing a test error per-
centage which is then used to compare different techniques.
The training error percentage is also often given for compar-
ison.

Omaz — Omin

— NP (6)
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The evolved ANNs have two outputs corresponding to
whether the condition is benign or malignant. The output
with the highest value is taken as the predicted class; in the
case of a draw the entry is classified as benign.

S. RESULTS

When applying CGPANN to the benchmarks, the transfer
function was fixed as unipolar sigmoid (Equation 7) in the
case of the ball throwing and Probenl Cancerl and as bipo-
lar sigmoid (Equation 8) for the pole balancing. Although
CGPANN can use evolution to dictate which transfer func-
tions are used, this was not undertaken here to strengthen
the comparison with other results in the literature. The
weight values used between nodes were limited to the range
[-1,1] for all of the experiments. Additionally for each
benchmark the following parameters were varied so as to
be suitable in each case: mutation rate, maximum arity and
maximum number of nodes.

fl@) = ;@,z (7)
f@) =1 (®)

The number of runs was set as one hundred for the pole
balancing and ball throwing and as fifty for Probenl Can-
cerl. Each run used different initial random chromosomes
and was averaged to produce the results presented in this
paper. In cases where a run failed to find a solution it was
assumed that a solution was found on the last evaluation
and the number of failed runs stated.

5.1 Double Pole Balancing

For this benchmark, the CGPANN parameters found which
produced the best results were as follows: a mutation rate
of five percent, a maximum of one hundred nodes each with
a maximum arity of thirty. Using these parameters all of
the one hundred runs found a solution in the allowed 16001
evaluations.

The results of applying CGPANN to the double pole bal-
ancing benchmark are given in Table 1 where they are com-
pared to other NE methods. As can be seen in Table 1, CG-
PANN compares very well, outperforming popular methods
SAIN, ESP and NEAT, being comparable to CoSyNE and
CMA-ES but requiring significantly more evaluations than
DirE.

Unfortunately the benchmark used by some of the other
NE methods was implemented slightly differently, and so a
true comparison is not possible. These differences include:
NEAT used their own modified sigmoid function, DirE in-
cluded an extra unit bias input, ESP used a weight range
of [-6,6] and CoSyNE [—10,10] (the others used a range
of [—1,1]). It is likely that the transfer function, extra bias
input and connection weight ranges will have an effect on
the difficulty of this benchmark, but to what extent is not
known.

5.2 Ball Throwing

For this benchmark, the CGPANN parameters found which
produced the best results were as follows: a mutation rate
of ten percent, a maximum of forty nodes each with a max-
imum arity of ten. Using these parameters ninety-two of

Table 1: Comparison of Results for the Double Pole
Balancing Benchmark

Method Evaluations | Std. Dev | Avg’ed Over
EP [45] 307200 - -
CE [§] 34000 - >30
CNE [7] 22100 - 50

EuSAIN [35] ~ 19000 - 100

SAIN [7] 12600 - 50

Q-MPL [7] 10583 - 50
ESP [7] 3800 - 50

NEAT [41] 3578 2704 120
NEvA [43] 2177 - 50
CGPANN 1111 1476 100
CoSyNE (6] 954 - 50
CMA-ES [12] 895 - 50

DirE [§] 410 - >30

Table 2: Comparison of Results for the Ball Throw-
ing Benchmark

Method Evaluations | Std. Dev.
CoSyNE [21] 10224 -
Compressed CoSyNE [21] 8220 -
CGPANN 6069 5990

the one hundred runs found a solution in the allowed 20001
evaluations.

The results of applying CGPANN to the ball throwing
benchmark are given in Table 2. It can be seen from Table
2 that CGPANN outperforms both of the given forms of
CoSyNE.

5.3 Probenl: Cancerl

When studying which CGPANN parameters were suited
to the Probenl Cancerl benchmark, the well know curse of
over-training was observed; whereby a ANN can correctly
classify more of the training set at the expense of its ability
to correctly classify the testing set. Therefore two results
are presented for this benchmark: the best result obtained
in terms of the training error percentage and also in terms of
the testing error percentage. Both of these results are given
in Table 3, where “Ir” is the best training error percentage
case and “Te” is the best testing error percentage case.

For this benchmark the lowest testing error percentage of
1.89% was found using the following parameters: a muta-
tion rate of eight percent, a maximum of one hundred nodes
each with a maximum arity of twenty-five. These param-
eters produced a training error percentage of 2.68%. The
lowest training error percentage of 2.34% was found using
the following parameters: a mutation rate of one percent,
a maximum of one hundred nodes each with a maximum
arity of forty. These parameters produced a testing error
percentage of 2.18%. For all of the Cancerl experiments the
number of evaluations was 20001.

Most of the results published in the literature, given in
Table 3, do not conform to the strict rules laid out in the
Probenl documentation [37]; which weakens the compari-
son. Of the results which do not follow the methodology
of the Probenl document, the methods used vary and are
not standardised. The differences include: size of the data
set, preprocessing of the data, sizes of training, validation




Table 3: Comparison of Results for the Probenl:
Cancerl Benchmark

Proben % Train | % Test
Method Compliant Err Err
LM [9] No 55 12.2
MLP [39] No - 6
SCG [9] No 0.2 5.4
MLP [32] No - 5.18
RAIC [10] No - 5.01
NEFCLASS [32] No - 194
SFC [1] No - 143
C4.5 [10] No - 1
LLS [9] No 10 10
Fuzzy-GA [33] No 3.00 3.08
CMAC ANN [46] Yes 0.59 3.04
RBFNN-Kalman [40] No - 3.6
BP [34] Yes - 3.506
GDX [9] No 2.3 3.3
RBFNN-RLS [40] No - 3.2
LLWNN-RLS [40] No - 2.8
AR + ANN [14] No - 2.6
SBS-BP-PSO [11] No - 2.49
ACS [34] Yes - 2.184
CGPANN (Tr) Yes 2.34 2.18
MFNNCA® [13] Yes 24.86 2.00
GA-MOO-ANN [3] Yes - 1.9
CGPANN (Te) Yes 2.68 1.89
M-RAN [49] Yes - 172
LP MSM [23] No 0.0 17
LS-SVM [36] No 5 1.47
MFN [49] Yes - 1.38
EPNet [45] No 3773 1.376
LSA machine [4] No - 1.2
SBS-BP-LM [11] No - 117
TS [15] No - 0.71

and test sets, different permutations of the data set and
the fitness functions used. Of the results which do follow
the Probenl document, some split the testing dataset into
testing and validation; this is allowed and documented by
the Probenl standards. This validation dataset can then be
used to test how well each solution has generalised and is
used as an early stopping criteria. An early stopping crite-
ria was not used by the CGPANN presented here; however
CMAC ANN, MFENNCA and GA-MOO-NN did use an early
stopping criteria.

6. DISCUSSION

As can be seen by the results given in Tables 1, 2 and
3, CGPANN preformed very well on the double pole bal-
ancing compared to other NE methods, outperformed both
forms of CoSyNE on the ball throwing and performed well
on the Probenl: Cancerl benchmark compared to a wide
range of ML methods. It should be noted that many of
the methods used as comparison were not topology optimis-
ing techniques; therefore decisions including the number of
nodes to be used and their arrangement must be made prior

3The experiment was repeated for a range of epochs and the
best result given.

to their use. CGPANN, in contrast, does not need the user
to specify a topology, and only requires a maximum num-
ber of nodes to be defined. Although not undertaken in this
paper, CGPANN can also evolve the transfer functions to
be used within the nodes; networks containing many differ-
ent node types could then be generated without increased
complexity to the implementation. Therefore when creating
ANNSs using CGPANN the user does not need to make deci-
sions about the number, arrangement or even type of nodes
to be evolved; information which is often not available in
real world tasks. On the other hand if a specific topology
or transfer function is known to be suitable, CGPANN can
then be restrained to these conditions, leaving evolution to
only operate on the unknowns; again making it very suited
to real world tasks where some domain knowledge is avail-
able.

From the double pole balancing and the Probenl: Can-
cerl results sections, it is clear that there is an issue with
non-standardised use of these benchmarks. The majority
of the double pole balancing did follow the same standards,
with the exceptions stated. This was not the case however
for the Probenl: Cancerl benchmark. It should be noted
that this does not reflect poorly on the published papers, for
example, some of the Cancerl results pre-date the Probenl
document and others were not concerned with the compar-
ison and simply wanted to show that medical diagnosis is
an application for a given method. It should be stated how-
ever that there are enormous benefits of following the same
standards, such as being able to repeat experiments, truly
compare methods/ results and then being able to accurately
investigate why different methods perform differently on dif-
ferent tasks.

Allowing multiple connections between nodes could be in-
terpreted as another example of slightly different ways in
which a benchmark could be implemented; this is not the
case. When CGP was originally applied to Boolean circuits
[26] it was perfectly reasonable, for example, for both in-
puts to a two input AND gate to be connected to the same
point. As the implementation of CGPANN presented here
is CGP in its original form but applied to ANN, no extra
criteria was made to prevent multiple connection between
nodes. This is an artefact of CGP and not an example of
a difference in benchmark implementation. However, if it
was decided that exceeding a given weight range was unde-
sirable, it could easily be prevented whilst maintaining the
ability of CGPANN to evolve the arity of the nodes’. For
example, only the first connection could be decoded into the
phenotype, or the average of the weights could be used.

The presence of multiple connections between nodes al-
lows CGPANN to evolve the arity of each node. Therefore
CGPANN can evolve the arity, weights, topology and trans-
fer functions of ANNSs, everything necessary to fully describe
an ANN. It is not known currently whether the ability to
evolve arity in this way offers an advantage. It is known
however that it was extensively utilised by the generated
ANNSs, as many instances of multiple connections were found
in every final ANN inspected for all three benchmarks. If
it is found that multiple connections between nodes is ben-
eficial it could be utilised by other topology evolving NE
methods. On the other hand if it is found to be insignificant
or detrimental it can easily be removed from CGPANN with
no impact to its operation.

The average number of evaluations (or epochs) required



to find a solution is not often given when ML methods are
applied to classification problems. This however has the
issue that different methods may require significantly more
evaluations to achieve their result. As an extreme, a truly
random search given infinite time will always find the best
solution but is clearly not the best search method. It is also
true that some methods get trapped in local optima and,
regardless of the amount of time available, will never find
better solutions. A significant advantage of NE methods is
that they are much less susceptible to getting trapped in
local optima and will often continue to find better solutions
with additional time. It is therefore recommended that when
applying ML methods to classification probelms, the number
of trial solutions tested before a solution is reached is stated.

Between submission and acceptance of this paper there
were two publications very closely related to the research
presented in this paper. The first is the use of CGPANN
on a range of medical diagnosis problems [2] including the
breast cancer dataset taken from the University of Wiscon-
sin Hospital [24]; as used in this paper. The second is an
implementation of CGPANN which uses the crossover evolu-
tionary operator and radial bias functions within the nodes
[25]; this paper also used the breast cancer dataset to eval-
uate performance.

7. CONCLUSION

CGP is naturally suited to the evolution of ANNs due
to its ability to describe every aspect of a ANN; weights,
topology, number of nodes, arity and transfer function. This
complete description means that very few assumptions con-
cerning the form of solutions need to be made prior to apply-
ing CGPANN to a problem. Additionally, a CGPANN can
be constrained when domain knowledge is available, making
CGPANN suited to real world problems. The results pre-
sented in this paper show that CGPANN compares strongly
to many other NE and ML techniques; many of which re-
quire the user to select suitable topologies prior to training.
CGPANN has many of the advantages associated with other
NE methods, resilience to local optima, not requiring gradi-
ent information and being suited to reinforcement learning,
coupled with advantages more specific to CGP, resilience to
bloat and redundancy in the chromosomes.
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